Аминокислоты примеры веществ. Кислотно-основные свойства аминокислот

💖 Нравится? Поделись с друзьями ссылкой

Аминокислоты – это гетерофункциональные органические соединения, в состав молекул которых входит аминогруппа NH2 и карбоксильная группа COOH

Аминоуксусная кислота

аминопропановая кислота

Физические свойства.
Аминокислоты – это бесцветные кристаллические растворимые в воде вещества. В зависимости от радикала они могут быть кислыми, горькими и безвкусными.

Химические свойства

Аминокислы – это амфотерные органические соединения (за счёт аминогруппы, они проявляют основные свойства и за счёт карбоксильной группы COOH проявляют кислотные свойства)

Реагируют с кислотами

H 2 N – CH 2 – COOH + NaOH = Cl - аминоуксусная кислота

Реагируют со щелочами

H 2 N – CH 2 – COOH + NaOH = H 2 N – CH 3 – COONa + H 2 O - натриевая соль глицина

Реагируют с основными оксидами

2H 2 N – CH 2 – COOH + CuO = (H 2 N – OH 2 – COO) 2 + H 2 O - медная соль глицина

Билет №17

Взаимосвязь строения, свойства и применения на примере простых веществ.

Для большинства неметаллов простых веществ характерно молекулярное строение, и лишь некоторые из них имеют немолекулярное строение.

Немолекулярное строение

C, B, Si

У этих неметаллов атомные кристаллические решётки, поэтому они обладают большой твёрдостью и очень высокими температурами плавления.

Добавка бора к стали, к сплавам алюминия, меди, никеля и др. улучшает их механические свойства.

Применение:

1. Алмаз – для бурения горных пород

2. Графит – для изготовления электродов, замедлителей нейтронов в атомных реакторах, в качестве смазочного материала в технике.

3. Уголь, состоящий в основном из углерода, - адсбент – для получения карбида кальция, чёрной краски.

Молекулярное строение

F 2 , O 2 , Cl 2 , Br 2 , N 2 , I 2 , S 8

Для этих неметаллов в твёрдом состоянии характерны молекулярные кристалические решётки, при обычных условиях это газы, жидкости или твёрдые вещества с низкими температурами плавления.

Применение:

1. Ускорение химических реакций, в том числе в металлургии

2. Резка и сварка металлов

3. В жидком виде в ракетных двигателях



4. В авиации и подводных лодках для дыхания

5. В медицине

Белки – как биополимеры. Первичная, вторичная и третичная структура белков. Свойства и биологические свойства белков.

Белки – это биополимеры в состав молекул которых входят остатки аминокислот

Белки имеют первичную, вторичную, третичную, и четвертичную структуру.

Первичная структура – это состоящая из остатков аминокислот соежинённых между собой пектидными связями

Вторичная структура – это цепь, свёрнутая в спираль и кроме пептидных связей есть водородные

Третичная структура – спираль, свёрнутая в клубок и дополнительно имеет сульфидные связи S-S

Четвертичная структура – двойная спираль, свёрнутая в клубок

Физические свойства

Белки – амфотерные электролиты. При определенном значении pH среды число положительных и отрицательных зарядов в молекуле белка одинаково. Белки имею разнообразное строение. Есть белки нерастворимые в воде, есть белки легко растворимые в воде. Есть белки малоактивные в химическом отношении, устойчивые к действию агентов. Есть белки крайне неустойчивые. Есть белки, имеющие вид нитей, достигающих в длину сотен нанометров; есть белки, имеющие форму шариков диаметром всего 5–7 нм. Они имеют большую молекулярную массу (104-107).

Химмические свойства
1. Реакция денатурации – это разрушение первичной структуры белка под действием температуры.
2. Цветные реакции на белки
а) Взаимодействие белка с Cu(OH)2
2NaOH + CuSO 4 = Na 2 SO 4 + Cu(OH) 2
б) Взаимодействие белка с HNO 3
Реактивом на серу является ацетат свинца (CH 3 COO) 2 Pb, образуется черный осадок PbS

Биологическая роль
Белки – строительные материалы
Белки являются обязательными компонентом всех клеточных структур
Белки ферменты, играют роль катализаторов
Регулярные белки: к ним относят гармоны
Белки – средство защиты
Белки как источник энергии

Химические свойства а-аминокислот определяются, в самом общем случае, наличием у одного и того же атома углерода карбоксильной и аминной групп. Специфика боковых функциональных групп аминокислот определяет различия в их реакционной способности и индивидуальности каждой аминокислоты. Свойства боковых функциональных групп выходят на первый план в молекулах полипептидов и белков, т.е. после того, как аминная и карбоксильная группа свое дело сделали - образовали полиамидную цепочку.

Итак, химические свойства собственно аминокислотного фрагмента подразделяются на реакции аминов, реакции карбоновых кислот и свойства, обязанные взаимному их влиянию.

Карбоксильная группа проявляет себя в реакциях со щелочами - образуя карбоксилаты, со спиртами - образуя сложные эфиры, с аммиаком и аминами - образуя амиды кислот, а-аминокислоты достаточно легко декарбоксилируются при нагревании и при действии ферментов (схема 4.2.1).

Эта реакция имеет важное физиологическое значение, поскольку ее реализация in vivo приводит к образованию соответствующих биогенных аминов, выполняющих ряд специфических функций в живых организмах. При декарбоксилировании гистидина образуется гистамин, обладающий гормональным действием. В организме человека он находится в связанном виде, освобождается при воспалительных и аллергических реакциях, анафилактическом шоке, вызывает расширение капилляров, сокращение гладкой мускулатуры, резко повышает секрецию соляной кислоты в желудке.

Так же, реакцией декарбоксилирования, вместе с реакцией гидроксилирования ароматического цикла, из триптофана образуется другой биогенный амин - серотонин. Он содержится у человека в клетках кишечника в тромбоцитах, в ядах кишечнополостных, моллюсков, членистоногих и земноводных, встречается в растениях (бананах, кофе, облепихе). Серотонин выполняет медиаторные функции в центральной и периферической нервной системах, влияет на тонус кровеносных сосудов, повышает стойкость капилляров, увеличивает количество тромбоцитов в крови (схема 4.2.2).

Аминогруппа аминокислот проявляет себя в реакциях с кислотами, образуя аммонийные соли, ацилируется

Схема 4.2.1

Схема 4.2.2

и алкилируется при взаимодействии с галогенангидридами и галогеналкилами, с альдегидами образует основания Шиффа, а с азотистой кислотой, как и обычные первичные амины, образует соответствующие гидроксипроизводные, в данном случае оксикислоты (схема 4.2.3).

Схема 4.2.3

Одновременное участие аминогруппы и карбоксильной функции в химических реакциях достаточно разнообразно. а-Аминокислоты образуют комплексы с ионами многих двухвалентных металлов - эти комплексы построены с участием двух молекул аминокислот на один ион металла, при этом металл образует с лигандами связи двух типов: карбоксильная группа дает с металлом ионную связь, а аминогруппа участвует своей неподеленной электронной парой, координирующейся на свободные орбитали металла (донорно-акцепторная связь), давая так называемые хелатные комплексы (схема 4.2.4, металлы расположены в ряд по устойчивости комплексов).

Так как в молекуле аминокислоты присутствует одновременно и кислотная и основная функция, то безусловно взаимодействие между ними неминуемо - оно приводит к образованию внутренней соли (цвиттер-иона). Так как это соль слабой кислоты и слабого основания, то в водном растворе она будет легко гидролизоваться, т.е. система равновесная. В кристаллическом состоянии аминокислоты имеют чисто цвиттер-ионную структуру, отсюда высокие этих веществ (схема 4.2.5).

Схема 4.2.4

Схема 4.2.5

Нингидринная реакция имеет большое значение для обнаружения аминокислот при их качественном и количественном анализе. Большинство аминокислот реагирует с нингидрином, выделяя соответствующий альдегид, при этом раствор окрашивается в интенсивный сине-фиолетовый цвет ( нм), растворы оранжевого цвета ( нм) дают только пролин и оксипролин. Схема реакции достаточно сложна и ее промежуточные стадии не совсем ясны, окрашенный продукт реакции носит название “фиолетовый Руэмана" (схема 4.2.6).

Дикетопиперазины образуются при нагревании свободных аминокислот, а лучше при нагревании их эфиров.

Схема 4.2.6

Продукт реакции можно определить по структуре - как производное гетероцикла пиразина, по схеме реакции - как циклический двойной амид, поскольку образуется он взаимодействием аминогрупп с карбоксильными функциями по схеме нуклеофильного замещения (схема 4.2.7).

Образование полиамидов а-аминокислот является разновидностью вышеописанной реакции образования дикепиперазинов, причем той

Схема 4.2.7

Схема 4.2.8

разновидностью, ради которой наверное Природа и создала этот класс соединений. Суть реакции заключается в нуклеофильной атаке аминной группы одной а-аминокислоты по карбоксильной группе второй а-аминокислоты, тогда как аминная группа второй аминокислоты последовательно атакует карбоксильную группу третьей аминокислоты и т.д. (схема 4.2.8).

Результатом реакции является полиамид или (называемый применительно к химии белков и белковоподобных соединений) полипептид. Соответственно фрагмент -CO-NH- называют пептидным звеном или пептидной связью.

Аминокислоты – соединения, которые содержат в молекуле одновременно аминогруппу и карбоксильную группу. Простейшим представителем аминокислот является аминоуксусная (глицин) кислота: NH 2 -CH 2 -COOH

Так как аминокислоты содержат две функциональные группы, то и свойства их зависят от этих групп атомов: NH 2 - и –CООН. Аминокислоты – амфотерные органические вещества, реагирующие как основание и как кислота.

Физические свойства.

Аминокислоты представляют собой бесцветные кристаллические вещества, хорошо растворимые в воде и малорастворимые в органических растворителях. Многие аминокислоты имеют сладкий вкус.

Химические свойства

Кислоты (проявляются основные свойства)

Основания

+оксиды металлов

Аминокислоты – образование пептидов

Аминокислоты не изменяют окраску индикатора, если количество аминогрупп и карбоксильных групп одинаково.

1) NH 2 -CH 2 -COOH + НCl → NH 3 Cl-CH 2 -COOH

2) NH 2 -CH 2 -COOH + NaOH → NH 2 -CH 2 -COONa + H 2 O

3) NH 2 -CH 2 -COOH + NH 2 -CH 2 -COOH → NH 2 -CH 2 -CO NH-CH 2 -COOH + H 2 O

Биологическая роль аминокислот заключается в том, что из их остатков образуется первичная структура белка. Существует 20 аминокислот, которые являются исходными веществами для производства белков в нашем организме. Некоторые аминокислоты применяются в качестве лечебных средств, например глутаминовую кислоту - при нервных заболеваниях, гистидин – при язве желудка. Некоторые аминокислоты находят применение в пищевой промышленности, их добавляют в консервы и пищевые концентраты для улучшения пищи.

Билет № 16

Анилин – представитель аминов. Химическое строение и свойства, получение и практическое применение.

Амины - это органические соединения, представляющие собой производные аммиака, в молекуле которого один, два или три атома водорода замещены на углеводородный радикал.

Общая формула:

Физические свойства.

Анилин- бесцветная маслянистая жидкость со слабым характерным запахом, малорастворим в воде, но хорошо растворим в спирте, эфире, бензоле. Температура кипения 184°C. Анилин- сильный яд, действует на кровь .

Химические свойства.

Кислоты (реакции по аминогруппе)

Br 2 (водный раствор)

C 6 H 5 NН 2 + НCl → C 6 H 5 NН 3 Cl

Химические свойства анилина обусловлены наличием в его молекуле аминогруппы -NH 2 и бензольного ядра, которые оказывают взаимное влияние друг на друга.

Получение.

Восстановление нитросоединений – реакция Зинина

C 6 H 5 NО 2 + Н 2 → C 6 H 5 NН 2 + Н 2 О

Применение.

Анилин применяется в производстве фотоматериалов, анилиновых красителей. Получают полимеры, взрывчатые вещества, лекарственные препараты.

Билет № 17

Белки - как биополимеры. Строение, свойства и биологические функции белков.

Белки (протеины , полипептиды ) - высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью аминокислот. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот.

Структура белка

Молекулы белков представляют собой линейные полимеры, состоящие из α -аминокислот (которые являются мономерами) и, в некоторых случаях, из модифицированных основных аминокислот. Последовательность аминокислот в белке соответствует информации, содержащейся в гене данного белка.

· Первичная структура - последовательность аминокислот в полипептидной цепи-линейно.

· Вторичная структура - закручивание полипептидной цепи в спираль, поддерживающееся водородными связями.

· Третичная структура -упаковка вторичной спирали в клубок. Поддерживают третичную структуру: дисульфидные связи, водородные связи.

Свойства

Белки являются амфотерными веществами, также как и аминокислоты.

Отличаются по степени растворимости в воде, но большинство белков в ней растворяются.

Денатурация: Резкое изменение условий, например, нагревание или обработка белка кислотой или щёлочью приводит к потере четвертичной, третичной и вторичной структур белка. Денатурация в некоторых случаях обратима.

Гидролиз: Под воздействием ферментов происходит гидрол белка до составляющих его аминокислот. Этот процесс происходит, например, в желудке человека под воздействием таких ферментов как пепсина и трипсина.

Функции белков в организме


Каталитическая функция

Ферменты - группа белков, обладающая специфическими каталитическими свойствами. Среди ферментов можно отметить такие белки: трипсин, пепсин, амилаза, липаза.

Структурная функция

Белки – это строительный материал почти всех тканей: мышечных, опорных, покровных.

Защитная функция

Белки антитела, способные обезвреживать вирусы, болезнетворные бактерии.

Сигнальная функция

Белки-рецепторы воспринимают и передают сигналы, поступившие от соседних клеток.

Транспортная функция

Гемоглобин переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким.

Запасающая функция

К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений и яйцеклетках животных. Они служат строительным материалом.

Двигательная функция

Белки, осуществляющие сократительную деятельность это актин и миозин


Билет №18

1. Общая характеристика высокомолекулярных соединений: состав, строение, реакции, лежащие в основе их получения (на примере полиэтилена).

Высокомолекулярные соединения (полимеры ) – это вещества, макромолекулы которых состоят из многократно повторяющихся звеньев. Их относительная молекулярная масса может измеряться от нескольких тысяч до многих миллионов.

Мономер – это низкомолекулярное вещество из которого получают полимер.

Структурное звено – многократно повторяющиеся в макромолекуле полимера группы атомов.

Степень полимеризации – количество повторяющихся структурных звеньев.

nСН 2 =СН 2 → (-СН 2 -СН 2 -) n


Полимеры могут быть получены в результате реакций полимеризации и поликонденсации.

Признаки реакции полимеризации :

1. Не образуется побочных веществ.

2. Реакция идет за счет двойных или тройных связей.

nСН 2 =СН 2 → (-СН 2 -СН 2 -) n – реакция полимеризации этилена - образование полиэтилена.

Признаки реакции поликонденсации :

1. Образуются побочные вещества.

2. Реакция идет за счет функциональных групп.

Пример: образование фенолформальдегидной смолы из фенола и формальдегида, полипептидной связи из аминокислот. При этом образуется кроме полимера побочный продукт – вода.

Высокомолекулярные соединения имеют определенные преимущества перед другими материалами: они устойчивы к действию реагентов, не проводят ток, механически прочные, легкие. На основе полимеров получают пленки, лаки, резину, пластмассы.

Аминокислоты - главный строительный материал любого живого организма. По своей природе они являются первичными азотистыми веществами растений, которые синтезируются из почвы. Строение и и аминокислот зависят от их состава.

Структура аминокислоты

Каждая ее молекула имеет карбоксильные и аминные группы, которые соединены с радикалом. Если аминокислота содержит 1 карбоксильную и 1 амино-группу, строение ее можно обозначить формулой, представленной ниже.

Аминокислоты, которые имеют 1 кислотную и 1 щелочную группу, называют моноаминомонокарбоновыми. В организмах также синтезируются и функции которых обусловливают 2 карбоксильных группы или 2 аминных группы. Аминокислоты, содержащие 2 карбоксильные и 1 аминную группы, называют моноаминодикарбоновыми, а имеющие 2 аминные и 1 карбоксильную - диаминомонокарбоновыми.

Также они различны по строению органического радикала R. У каждой из них имеется свое наименование и структура. Отсюда и различные функции аминокислот. Именно наличие кислотной и щелочной групп обеспечивает ее высокую реактивность. Эти группы соединяют аминокислоты и образуют полимер - белок. Белки еще именуются полипептидами из-за своего строения.

Аминокислоты как строительный материал

Молекула белка - это цепочка из десятков или сотен аминокислот. Белки отличаются по составу, количеству и порядку расположения аминокислот, ведь число сочетаний из 20 составляющих практически бесконечно. Одни из них имеют весь состав незаменимых аминокислот, иные обходятся без одной или нескольких. Отдельные аминокислоты, структура, функции которых подобны белкам человеческого тела, не применяются в качестве пищевых, так как малорастворимы и не расщепляются ЖКТ. К таким принадлежат белки ногтей, волос, шерсти или перьев.

Функции аминокислот трудно переоценить. Эти вещества выступают главной пищей в рационе людей. Какую функцию выполняют аминокислоты? Они увеличивают рост мышечной массы, помогают укреплению суставов и связок, восстанавливают поврежденные ткани организма и участвуют во всех процессах, происходящих в теле человека.

Незаменимые аминокислоты

Только из добавок или пищевых продуктов можно получить Функции в процессе формирования здоровых суставов, крепких мышц, красивых волос очень значимы. К таким аминокислотам относятся:

  • фенилаланин;
  • лизин;
  • треонин;
  • метионин;
  • валин;
  • лейцин;
  • триптофан;
  • гистидин;
  • изолейцин.

Функции аминокислот незаменимых

Эти кирпичики выполняют важнейшие функции в работе каждой клетки человеческого организма. Они незаметны, пока поступают в организм в достаточном количестве, но их недостаток существенно ухудшает работу всего организма.

  1. Валин возобновляет мышцы, служит отличным источником энергии.
  2. Гистидин улучшает состав крови, способствует восстановлению и росту мышц, улучшает работу суставов.
  3. Изолейцин помогает выработке гемоглобина. Контролирует количество сахара в крови, повышает энергичность человека, выносливость.
  4. Лейцин укрепляет иммунитет, следит за уровнем сахара и лейкоцитов в крови. Если уровень лейкоцитов завышен: он их понижает и подключает резервы организма для ликвидации воспаления.
  5. Лизин помогает усвоению кальция, что формирует и укрепляет кости. Помогает выработке коллагена, улучшает структуру волос. Для мужчин это отличный анаболик, так как он наращивает мышцы и увеличивает мужскую силу.
  6. Метионин нормализует работу пищеварительной системы и печени. Участвует в расщеплении жиров, убирает токсикоз у беременных, благотворно влияет на волосы.
  7. Треонин улучшает работу ЖКТ. Повышает иммунитет, участвует в создании эластина и коллагена. Треонин препятствует отложению жира в печени.
  8. Триптофан отвечает за эмоции человека. Вырабатывает серотонин - гормон счастья, тем самым нормализует сон, поднимает настроение. Укрощает аппетит, благотворительно влияет на сердечную мышцу и артерии.
  9. Фенилаланин служит передатчиком сигналов от нервных клеток в мозг головы. Улучшает настроение, подавляет нездоровый аппетит, улучшает память, повышает восприимчивость, снижает боль.

Дефицит незаменимых аминокислот приводит к остановке роста, нарушению обмена веществ, снижению мышечной массы.

Заменимые аминокислоты

Это такие аминокислоты, строение и функции которых вырабатываются в организме:

  • аргинин;
  • аланин;
  • аспарагин;
  • глицин;
  • пролин;
  • таурин;
  • тирозин;
  • глутамат;
  • серин;
  • глутамин;
  • орнитин;
  • цистеин;
  • карнитин.

Функции аминокислот заменимых

  1. Цистеин ликвидирует токсические вещества, участвует в создании тканей кожи и мышц, представляет собой естественный антиоксидант.
  2. Тирозин снижает физическую усталость, ускоряет метаболизм, ликвидирует стресс и депрессию.
  3. Аланин служит для роста мускулатуры, является источником энергии.
  4. увеличивает метаболизм и снижает образование аммиака при больших нагрузках.
  5. Цистин устраняет боль при травмировании связок и суставов.
  6. отвечает за мозговую активность, во время длительных физических нагрузок переходит в глюкозу, вырабатывая энергию.
  7. Глутамин восстанавливает мышцы, повышает иммунитет, ускоряет метаболизм, усиливает работу мозга и создает гормон роста.
  8. Глицин необходим для работы мышц, расщепления жира, стабилизации артериального давления и сахара в крови.
  9. Карнитин перемещает жировые кислоты в клетки, где совершается их расщепление с выделением энергии, в результате чего сжигается лишний жир и генерируется энергия.
  10. Орнитин производит гормон роста, участвует в процессе мочеобразования, расщепляет жирные кислоты, помогает выработке инсулина.
  11. Пролин обеспечивает производство коллагена, он необходим для связок и суставов.
  12. Серин повышает иммунитет и вырабатывает энергию, нужен для быстрого метаболизма жирных кислот и роста мышц.
  13. Таурин расщепляет жир, поднимает сопротивляемость организма, синтезирует желчные соли.

Белок и его свойства

Белки, или протеины - высокомолекулярные соединения с содержанием азота. Понятие "протеин", впервые обозначенное Берцелиусом в 1838 г., происходит от греческого слова и означает "первичный", что отображает лидирующее значение протеинов в природе. Разновидность белков дает возможность для существования огромного количества живых существ: от бактерий до человеческого организма. Их существенно больше, чем других макромолекул, ведь белки - это фундамент живой клетки. Составляют приблизительно 20% от массы человеческого тела, больше 50% сухой массы клетки. Такое количество разнообразных белков объясняется свойствами двадцати различных аминокислот, которые взаимодействуют друг с другом и создают полимерные молекулы.

Выдающееся свойство белков - способность к самостоятельному созданию определенной, свойственной конкретному белку пространственной структуры. По белки - это биополимеры с пептидными связями. Для химического состава белков свойственно постоянное среднее содержание азота - приблизительно 16%.

Жизнь, а также рост и развитие организма невозможны без функции белковых аминокислот строить новые клетки. Белки нельзя заменить прочими элементами, их роль в человеческом организме является чрезвычайно важной.

Функции белков

Необходимость белков заключается в таких функциях:

  • он необходим для роста и развития, так как выступает главным строительным материалом для создания новых клеток;
  • управляет метаболизмом, во время которого освобождается энергия. После принятия пищи скорость метаболизма увеличивается, например, если еда состоит из углеводов, метаболизм ускоряется на 4%, если из белков - на 30%;
  • регулируют в организме, благодаря своей гидрофильности - способности притягивать воду;
  • усиливают работу иммунной системы, синтезируя антитела, которые защищают от инфекции и ликвидируют угрозу заболевания.

Продукты - источники белков

Мышцы и скелет человека состоят из живых тканей, которые на протяжении жизни не только функционируют, но и обновляются. Восстанавливаются после повреждений, сохраняют свою силу и прочность. Для этого им требуются вполне определенные питательные вещества. Пища обеспечивает организм энергией, необходимой для всех процессов, включая работу мышц, рост и восстановление тканей. А белок в организме используется и как источник энергии, и как стройматериал.

Поэтому очень важно соблюдать его ежедневное использование в пищу. Богатые белком продукты: курица, индейка, постная ветчина, свинина, говядина, рыба, креветки, фасоль, чечевица, бекон, яйца, орех. Все эти продукты обеспечивают организм белком и дают энергию, необходимую для жизни.

Аминокислоты - гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы: аминогруппу - NH 2 и карбоксиль­ную группу -СООН, связанные с углеводородным радикалом.Общую формулу простей­ших аминокислот можно за­писать так:

Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа - NH 2 определяет основные свой­ства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа -СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений. Следовательно, аминокислоты - это амфотерные орга­нические соединения. Со щелочами они реагируют как кислоты:

С сильными кислотами- как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависи­мости от радикала R- они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым , т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин. Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки -NH-СО-, например:

Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полимамидов.

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

Полиамиды альфа-аминокислот называются пепти­дами . В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды . В таких соединениях группы -NH-СО- на­зывают пептидными.

Изомерия и номенклатура аминокислот

Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита: α, β, у и т. д. Так, 2-аминобутановую кислоту можно на­звать также α-аминокислотой:

Способы получения аминокислот

Рассказать друзьям