Приведение под знак дифференциала. Решение дифференциальных уравнений

💖 Нравится? Поделись с друзьями ссылкой

Сначала немного поговорим о постановке задачи в общем виде, а затем перейдём к примерам интегрирования подстановкой. Допустим, в нас есть некий интеграл $\int g(x) \; dx$. Однако в таблице интегралов нужной формулы нет, да и разбить заданный интеграл на несколько табличных не удаётся (т.е. непосредственное интегрирование отпадает). Однако задача будет решена, если нам удастся найти некую подстановку $u=\varphi(x)$, которая сведёт наш интеграл $\int g(x) \; dx$ к какому-либо табличному интегралу $\int f(u) \; du=F(u)+C$. После применения формулы $\int f(u) \; du=F(u)+C$ нам останется только вернуть обратно переменную $x$. Формально это можно записать так:

$$\int g(x) \; dx=|u=\varphi(x)|=\int f(u) \; du=F(u)+C=F(\varphi(x))+C.$$

Проблема в том, как выбрать такую подстановку $u$. Для этого понадобится знание, во-первых, таблицы производных и умение её применять для дифференцирования сложных функций , а во-вторых, таблицы неопределенных интегралов . Кроме того, нам будет крайне необходима формула, которую я запишу ниже. Если $y=f(x)$, то:

\begin{equation}dy=y"dx\end{equation}

Т.е. дифференциал некоторой функции равен производной этой функции, умноженной на дифференциал независимой переменной. Это правило очень важно, и именно оно позволит применять метод подстановки. Здесь же укажем пару частных случаев, которые получаются из формулы (1). Пусть $y=x+C$, где $C$ - некая константа (число, попросту говоря). Тогда, подставляя в формулу (1) вместо $y$ выражение $x+C$, получим следующее:

$$ d(x+C)=(x+C)" dx $$

Так как $(x+C)"=x"+C"=1+0=1$, то указанная выше формула станет такой:

$$ d(x+C)=(x+C)" dx=1\cdot dx=dx.$$

Запишем полученный результат отдельно, т.е.

\begin{equation}dx=d(x+C)\end{equation}

Полученная формула означает, что прибавление константы под дифференциалом не изменяет оный дифференциал, т.е. $dx=d(x+10)$, $dx=d(x-587)$ и так далее.

Рассмотрим еще один частный случай для формулы (1). Пусть $y=Cx$, где $C$, опять-таки, является некоторой константой. Найдем дифференциал этой функции, подставляя в формулу (1) выражение $Cx$ вместо $y$:

$$ d(Cx)=(Cx)"dx $$

Так как $(Cx)"=C\cdot (x)"=C\cdot 1=C$, то записанная выше формула $d(Cx)=(Cx)"dx$ станет такой: $d(Cx)=Cdx$. Если разделить обе части этой формулы на $C$ (при условии $C\neq 0$), то получим $\frac{d(Cx)}{C}=dx$. Этот результат можно переписать в несколько иной форме:

\begin{equation}dx=\frac{1}{C}\cdot d(Cx)\;\;\;(C\neq 0)\end{equation}

Полученная формула говорит о том, что умножение выражения под дифференциалом на некую ненулевую константу требует введения соответствующего множителя, компенсирующего такое домножение. Например, $dx=\frac{1}{5} d(5x)$, $dx=-\frac{1}{19} d(-19x)$.

В примерах №1 и №2 формулы (2) и (3) будут рассмотрены подробно.

Замечание относительно формул

В данной теме будут использоваться как формулы 1-3, так и формулы из таблицы неопределённых интегралов , которые тоже имеют свои номера. Чтобы не было путаницы, условимся о следующем: если в теме встречается текст "используем формулу №1", то означает он буквально следующее "используем формулу №1, расположенную на этой странице ". Если нам понадобится формула из таблицы интегралов, то это будем оговаривать каждый раз отдельно. Например, так: "используем формулу №1 из таблицы интегралов".

И ещё одно небольшое примечание

Перед началом работы с примерами рекомендуется ознакомиться с материалом, изложенным в предыдущих темах, посвящённых понятию неопределённого интеграла и . Изложение материала в этой теме опирается на сведения, указанные в упомянутых темах.

Пример №1

Найти $\int \frac{dx}{x+4}$.

Если мы обратимся к , то не сможем найти формулу, которая точно соответствует интегралу $\int \frac{dx}{x+4}$. Наиболее близка к этому интегралу формула №2 таблицы интегралов, т.е. $\int \frac{du}{u}=\ln|u|+C$. Проблема в следующем: формула $\int \frac{du}{u}=\ln|u|+C$ предполагает, что в интеграле $\int \frac{du}{u}$ выражения в знаменателе и под дифференциалом должны быть одинаковы (и там и там расположена одна буква $u$). В нашем случае в $\int \frac{dx}{x+4}$ под дифференциалом находится буква $x$, а в знаменателе - выражение $x+4$, т.е. налицо явное несоответствие табличной формуле. Попробуем "подогнать" наш интеграл под табличный. Что произойдёт, если под дифференциал вместо $x$ подставить $x+4$? Для ответа на этот вопрос применим , подставив в неё выражение $x+4$ вместо $y$:

$$ d(x+4)=(x+4)"dx $$

Так как $(x+4)"=x"+(4)"=1+0=1$, то равенство $ d(x+4)=(x+4)"dx $ станет таким:

$$ d(x+4)=1\cdot dx=dx $$

Итак, $dx=d(x+4)$. Честно говоря, этот же результат можно было получить, просто подставив в вместо константы $C$ число $4$. В дальнейшем мы так и будем делать, а на первый раз разобрали процедуру получения равенства $dx=d(x+4)$ подробно. Но что даёт нам равенство $dx=d(x+4)$?

А даёт оно нам следующий вывод: если $dx=d(x+4)$, то в интеграл $\int \frac{dx}{x+4}$ вместо $dx$ можно подставить $d(x+4)$, причём интеграл от этого не изменится:

$$ \int \frac{dx}{x+4}=\int \frac{d(x+4)}{x+4}$$

Сделали мы это преобразование лишь для того, чтобы полученный интеграл стал полностью соответствовать табличной формуле $\int \frac{du}{u}=\ln|u|+C$. Чтобы такое соответствие стало совсем явным, заменим выражение $x+4$ буквой $u$ (т.е. сделаем подстановку $u=x+4$):

$$ \int \frac{dx}{x+4}=\int \frac{d(x+4)}{x+4}=|u=x+4|=\int \frac{du}{u}=\ln|u|+C.$$

По сути, задача уже решена. Осталось лишь вернуть переменную $x$. Вспоминая, что $u=x+4$, получим: $\ln|u|+C=\ln|x+4|+C$. Полное решение без пояснений выглядит так:

$$ \int \frac{dx}{x+4}=\int \frac{d(x+4)}{x+4}=|u=x+4|=\int \frac{du}{u}=\ln|u|+C=\ln|x+4|+C.$$

Ответ : $\int \frac{dx}{x+4}=\ln|x+4|+C$.

Пример №2

Найти $\int e^{3x} dx$.

Если мы обратимся к таблице неопределённых интегралов , то не сможем найти формулу, которая точно соответствует интегралу $\int e^{3x} dx$. Наиболее близка к этому интегралу формула №4 из таблицы интегралов, т.е. $\int e^u du=e^u+C$. Проблема в следующем: формула $\int e^u du=e^u+C$ предполагает, что в интеграле $\int e^u du$ выражения в степени числа $e$ и под дифференциалом должны быть одинаковы (и там и там расположена одна буква $u$). В нашем случае в $\int e^{3x} dx$ под дифференциалом находится буква $x$, а в степени числа $e$ - выражение $3x$, т.е. налицо явное несоответствие табличной формуле. Попробуем "подогнать" наш интеграл под табличный. Что произойдёт, если под дифференциал вместо $x$ подставить $3x$? Для ответа на этот вопрос применим , подставив в неё выражение $3x$ вместо $y$:

$$ d(3x)=(3x)"dx $$

Так как $(3x)"=3\cdot (x)"=3\cdot 1=3$, то равенство $d(3x)=(3x)"dx$ станет таким:

$$ d(3x)=3dx $$

Разделив обе части полученного равенства на $3$, будем иметь: $\frac{d(3x)}{3}=dx$, т.е. $dx=\frac{1}{3}\cdot d(3x)$. Вообще-то, равенство $dx=\frac{1}{3}\cdot d(3x)$ можно было получить, просто подставив в вместо константы $C$ число $3$. В дальнейшем мы так и будем делать, а на первый раз разобрали процедуру получения равенства $dx=\frac{1}{3}\cdot d(3x)$ подробно.

Что нам дало полученное равенство $dx=\frac{1}{3}\cdot d(3x)$? Оно означает, что в интеграл $\int e^{3x} dx$ вместо $dx$ можно подставить $\frac{1}{3}\cdot d(3x)$, причём интеграл от этого не изменится:

$$ \int e^{3x} dx= \int e^{3x} \cdot\frac{1}{3} d(3x) $$

Вынесем константу $\frac{1}{3}$ за знак интеграла и заменим выражение $3x$ буквой $u$ (т.е. сделаем подстановку $u=3x$), после чего применим табличную формулу $\int e^u du=e^u+C$:

$$ \int e^{3x} dx= \int e^{3x} \cdot\frac{1}{3} d(3x)=\frac{1}{3}\cdot \int e^{3x} d(3x)=|u=3x|=\frac{1}{3}\cdot\int e^u du=\frac{1}{3}\cdot e^u+C.$$

Как и в предыдущем примере, нужно вернуть обратно исходную переменную $x$. Так как $u=3x$, то $\frac{1}{3}\cdot e^u+C=\frac{1}{3}\cdot e^{3x}+C$. Полное решение без комментариев выглядит так:

$$ \int e^{3x} dx= \int e^{3x} \cdot\frac{1}{3} d(3x)=\frac{1}{3}\cdot \int e^{3x} d(3x)=|u=3x|=\frac{1}{3}\cdot\int e^u du=\frac{1}{3}\cdot e^u+C=\frac{1}{3}\cdot e^{3x}+C.$$

Ответ : $ \int e^{3x} dx= \frac{1}{3}\cdot e^{3x}+C$.

Пример №3

Найти $\int (3x+2)^2 dx$.

Для нахождения данного интеграла применим два способа. Первый способ состоит в раскрытии скобок и непосредственном интегрировании . Второй способ заключается в применении метода подстановки.

Первый способ

Так как $(3x+2)^2=9x^2+12x+4$, то $\int (3x+2)^2 dx=\int (9x^2+12x+4)dx$. Представляя интеграл $\int (9x^2+12x+4)dx$ в виде суммы трёх интегралов и вынося константы за знаки соответствующих интегралов, получим:

$$ \int (9x^2+12x+4)dx=\int 9x^2 dx+\int 12x dx+\int 4 dx=9\cdot \int x^2 dx+12\cdot \int x dx+4\cdot \int 1 dx $$

Чтобы найти $\int x^2 dx$ подставим $u=x$ и $\alpha=2$ в формулу №1 таблицы интегралов: $\int x^2 dx=\frac{x^{2+1}}{2+1}+C=\frac{x^3}{3}+C$. Аналогично, подставляя $u=x$ и $\alpha=1$ в ту же формулу из таблицы, будем иметь: $\int x^1 dx=\frac{x^{1+1}}{1+1}+C=\frac{x^2}{2}+C$. Так как $\int 1 dx=x+C$, то:

$$ 9\cdot \int x^2 dx+12\cdot \int x dx+4\cdot \int 1 dx=9\cdot\frac{x^3}{3}+12\cdot \frac{x^2}{2}+4\cdot x+C=3x^3+6x^2+4x+C. $$

$$ \int (9x^2+12x+4)dx=\int 9x^2 dx+\int 12x dx+\int 4 dx=9\cdot \int x^2 dx+12\cdot \int x dx+4\cdot \int 1 dx=\\ =9\cdot\frac{x^3}{3}+12\cdot \frac{x^2}{2}+4\cdot x+C=3x^3+6x^2+4x+C. $$

Второй способ

Скобки раскрывать не будем. Попробуем сделать так, чтобы под дифференциалом вместо $x$ появилось выражение $3x+2$. Это позволит ввести новую переменную и применить табличную формулу. Нам нужно, чтобы под дифференциалом возник множитель $3$, посему подставляя в значение $C=3$, получим $d(x)=\frac{1}{3}d(3x)$. Кроме того, под дифференциалом не хватает слагаемого $2$. Согласно прибавление константы под знаком дифференциала не меняет оный дифференциал, т.е. $\frac{1}{3}d(3x)=\frac{1}{3}d(3x+2)$. Из условий $d(x)=\frac{1}{3}d(3x)$ и $\frac{1}{3}d(3x)=\frac{1}{3}d(3x+2)$ имеем: $dx=\frac{1}{3}d(3x+2)$.

Отмечу, что равенство $dx=\frac{1}{3}d(3x+2)$ можно получить и иным способом:

$$ d(3x+2)=(3x+2)"dx=((3x)"+(2)")dx=(3\cdot x"+0)dx=3\cdot 1 dx=3dx;\\ dx=\frac{1}{3}d(3x+2). $$

Используем полученное равенство $dx=\frac{1}{3}d(3x+2)$, подставив в интеграл $\int (3x+2)^2 dx$ выражение $\frac{1}{3}d(3x+2)$ вместо $dx$. Константу $\frac{1}{3}$ вынесем за знак получившегося интеграла:

$$ \int (3x+2)^2 dx=\int (3x+2)^2 \cdot \frac{1}{3}d(3x+2)=\frac{1}{3}\cdot \int (3x+2)^2 d(3x+2). $$

Дальнейшее решение состоит в осуществлении подстановки $u=3x+2$ и применении формулы №1 из таблицы интегралов:

$$ \frac{1}{3}\cdot \int (3x+2)^2 d(3x+2)=|u=3x+2|=\frac{1}{3}\cdot \int u^2 du=\frac{1}{3}\cdot \frac{u^{2+1}}{2+1}+C=\frac{u^3}{9}+C. $$

Возвращая вместо $u$ выражение $3x+2$, получим:

$$ \frac{u^3}{9}+C=\frac{(3x+2)^3}{9}+C. $$

Полное решение без пояснений таково:

$$ \int (3x+2)^2 dx=\frac{1}{3}\cdot \int (3x+2)^2 d(3x+2)=|u=3x+2|=\\ =\frac{1}{3}\cdot \int u^2 du=\frac{u^3}{9}+C=\frac{(3x+2)^3}{9}+C. $$

Предвижу пару вопросов, поэтому попробую сформулировать их дать ответы.

Вопрос №1

Что-то тут не сходится. Когда мы решали первым способом, что получили, что $\int (9x^2+12x+4)dx=3x^3+6x^2+4x+C$. При решении вторым путём, ответ стал таким: $\int (3x+2)^2 dx=\frac{(3x+2)^3}{9}+C$. Однако перейти от второго ответа к первому не получается! Если раскрыть скобки, то получаем следующее:

$$ \frac{(3x+2)^3}{9}+C=\frac{27x^3+54x^2+36x+8}{9}+C=\frac{27x^3}{9}+\frac{54x^2}{9}+\frac{36x}{9}+\frac{8}{9}+C=3x^3+6x^2+4x+\frac{8}{9}+C. $$

Ответы не совпадают! Откуда взялась лишняя дробь $\frac{8}{9}$?

Этот вопрос говорит о том, что Вам стоит обратиться к предыдущим темам. Почитать тему про понятие неопределённого интеграла (уделив особое внимание вопросу №2 в конце страницы) и непосредственному интегрированию (стоит обратить внимание на вопрос №4). В указанных темах этот вопрос освещается подробно. Если уж совсем коротко, то интегральная константа $C$ может быть представлена в разных формах. Например, в нашем случае переобозначив $C_1=C+\frac{8}{9}$, получим:

$$ 3x^3+6x^2+4x+\frac{8}{9}+C=3x^3+6x^2+4x+C_1. $$

Посему никакого противоречия нет, ответ может быть записан как в форме $3x^3+6x^2+4x+C$, так и в виде $\frac{(3x+2)^3}{9}+C$.

Вопрос №2

Зачем было решать вторым способом? Это же лишнее усложнение! Зачем применять кучу лишних формул, чтобы найти ответ, который первым способом получается в пару действий? Всего-то и нужно было, что скобки раскрыть, применив школьную формулу.

Ну, во-первых, не такое уж это и усложнение. Когда вы разберётесь в методе подстановки, то решения подобных примеров станете делать в одну строчку: $\int (3x+2)^2 dx=\frac{1}{3}\cdot \int (3x+2)^2 d(3x+2)=\frac{(3x+2)^3}{9}+C$. Однако давайте взглянем на этот пример по-иному. Представьте, что нужно вычислить не $\int (3x+2)^2 dx$, а $\int (3x+2)^{200} dx$. При решении вторым способом придётся лишь чуток подправить степени и ответ будет готов:

$$ \int (3x+2)^{200} dx=\frac{1}{3}\cdot \int (3x+2)^{200} d(3x+2)=|u=3x+2|=\\ =\frac{1}{3}\cdot \int u^{200} du=\frac{u^{201}}{603}+C=\frac{(3x+2)^{201}}{603}+C. $$

А теперь представьте, что этот же интеграл $\int (3x+2)^{200} dx$ требуется взять первым способом. Для начала нужно будет раскрыть скобку $(3x+2)^{200}$, получив при этом сумму в двести одно слагаемое! А потом каждое слагаемое ещё и проинтегрировать придётся. Поэтому вывод тут такой: для больших степеней метод непосредственного интегрирования не годится. Второй способ, несмотря на кажущуюся сложность, более практичен.

Пример №4

Найти $\int \sin2x dx$.

Решение этого примера проведём тремя различными способами.

Первый способ

Заглянем в таблицу интегралов . Ниболее близка к нашему примеру формула №5 из этой таблицы, т.е. $\int \sin u du=-\cos u+C$. Чтобы подогнать интеграл $\int \sin2x dx$ под вид $\int \sin u du$, воспользуемся , внеся множитель $2$ под знак дифференциала. Собственно, мы это делали уже в примере №2, так что обойдёмся без подробных комментариев:

$$ \int \sin 2x dx=\left|dx=\frac{1}{2}\cdot d(2x) \right|=\int \sin 2x \cdot\frac{1}{2}d(2x)=\\ =\frac{1}{2} \int \sin 2x d(2x)=|u=2x|=\frac{1}{2} \int \sin u du=-\frac{1}{2}\cos u+C=-\frac{1}{2}\cos 2x+C. $$

Ответ : $\int \sin2x dx=-\frac{1}{2}\cos 2x+C$.

Второй способ

Для решения вторым способом применим простую тригонометрическую формулу: $\sin 2x=2\sin x\cos x$. Подставим вместо $\sin 2x$ выражение $2 \sin x \cos x$, при этом константу $2$ вынесем за знак интеграла:

Какова цель такого преобразования? В таблице интеграла $\int \sin x\cos x dx$ нет, но мы можем немного препобразовать $\int \sin x\cos x dx$, чтобы он стал больше походить на табличный. Для этого найдем $d(\cos x)$, используя . Подставим в упомянутую формулу $\cos x$ вместо $y$:

$$ d(\cos x)=(\cos x)"dx=-\sin x dx. $$

Так как $d(\cos x)=-\sin x dx$, то $\sin x dx=-d(\cos x)$. Так как $\sin x dx=-d(\cos x)$, то мы можем в $\int \sin x\cos x dx$ вместо $\sin x dx$ подставить $-d(\cos x)$. Значение интеграла при этом не изменится:

$$ 2\cdot\int \sin x\cos x dx=2\cdot\int \cos x \cdot (-d(\cos x))=-2\int\cos x d(\cos x) $$

Говоря иными словами, мы внесли под дифференциал $\cos x$. Теперь, сделав подстановку $u=\cos x$, мы сможем применить формулу №1 из таблицы интегралов:

$$ -2\int\cos x d(\cos x)=|u=\cos x|=-2\int u du=-2\cdot \frac{u^2}{2}+C=-u^2+C=-\cos^2x+C. $$

Ответ получен. Вообще, можно не вводить букву $u$. Когда вы приобретёте достаточный навык в решении подобного рода интегралов, то необходимость в дополнительных обозначениях отпадёт. Полное решение без пояснений таково:

$$ \int \sin 2x dx=2\cdot\int \sin x\cos x dx=|\sin x dx=-d(\cos x)|=-2\int\cos x d(\cos x)=|u=\cos x|=\\ =-2\int u du=-2\cdot \frac{u^2}{2}+C=-u^2+C=-\cos^2x+C. $$

Ответ : $\int \sin2x dx=-\cos^2x+C$.

Третий способ

Для решения третьим способом применим ту же тригонометрическую формулу: $\sin 2x=2\sin x\cos x$. Подставим вместо $\sin 2x$ выражение $2 \sin x \cos x$, при этом константу $2$ вынесем за знак интеграла:

$$ \int \sin 2x dx=\int 2 \sin x\cos x dx=2\cdot\int \sin x\cos x dx $$

Найдем $d(\sin x)$, используя . Подставим в упомянутую формулу $\sin x$ вместо $y$:

$$ d(\sin x)=(\sin x)"dx=\cos x dx. $$

Итак, $d(\sin x)=\cos x dx$. Из полученного равенства следует, что мы можем в $\int \sin x\cos x dx$ вместо $\cos x dx$ подставить $d(\sin x)$. Значение интеграла при этом не изменится:

$$ 2\cdot\int \sin x\cos x dx=2\cdot\int \sin x \cdot d(\sin x) $$

Говоря иными словами, мы внесли под дифференциал $\sin x$. Теперь, сделав подстановку $u=\sin x$, мы сможем применить формулу №1 из таблицы интегралов:

$$ 2\int\sin x d(\sin x)=|u=\sin x|=2\int u du=2\cdot \frac{u^2}{2}+C=u^2+C=\sin^2x+C. $$

Ответ получен. Полное решение без пояснений имеет вид:

$$ \int \sin 2x dx=2\cdot\int \sin x\cos x dx=|\cos x dx=d(\sin x)|=2\cdot\int \sin x \cdot d(\sin x)=|u=\sin x|=\\ =2\int u du=2\cdot \frac{u^2}{2}+C=u^2+C=\sin^2x+C. $$

Ответ : $\int \sin2x dx=\sin^2x+C$.

Возможно, что после прочтения этого примера, особенно трёх различных (на первый взгляд) ответов, возникнет вопрос. Рассмотрим его.

Вопрос №3

Погодите. Ответы должны совпадать, но они отличаются! В примере №3 различие было всего-то в константе $\frac{8}{9}$, но здесь даже внешне ответы не похожи: $-\frac{1}{2}\cos 2x+C$, $-\cos^2x+C$, $\sin^2x+C$. Неужели всё дело опять в интегральной константе $C$?

Да, дело именно в этой константе. Давайте сведём все ответы к одной форме, после чего это различие в константах станет совсем явным. Начнём с $-\frac{1}{2}\cos 2x+C$. Используем простое тригонометрическое равенство: $\cos 2x=1-2\sin^2 x$. Тогда выражение $-\frac{1}{2}\cos 2x+C$ станет таким:

$$ -\frac{1}{2}\cos 2x+C=-\frac{1}{2}\cdot(1-2\sin^2 x)+C=-\frac{1}{2}+\frac{1}{2}\cdot 2\sin^2x+C=\sin^2 x+C-\frac{1}{2}. $$

Теперь поработаем со вторым ответом, т.е. $-\cos^2x+C$. Так как $\cos^2 x=1-\sin^2x$, то:

$$ -\cos^2x+C=-(1-\sin^2x)+C=-1+\sin^2x+C=\sin^2x+C-1 $$

Три ответа, которые мы получили в примере №4, стали такими: $\sin^2 x+C-\frac{1}{2}$, $\sin^2x+C-1$, $\sin^2x+C$. Полагаю, теперь видно, что отличаются они друг от друга лишь некоторым числом. Т.е. дело опять оказалось в интегральной константе. Как видите, небольшое различие в интегральной константе способно, в принципе, сильно изменить внешний вид ответа, - но от этого ответ не перестанет быть правильным. К чему я веду: если в сборнике задач вы увидите ответ, не совпадающий с вашим, то это вовсе не означает, что ваш ответ неверен. Возможно, что вы просто пришли к ответу иным способом, чем предполагал автор задачи. А убедиться в правильности ответа поможет проверка, основанная на определении неопределённого интеграла . Например, если интеграл $\int \sin2x dx=-\frac{1}{2}\cos 2x+C$ найден верно, то должно выполняться равенство $\left(-\frac{1}{2}\cos 2x+C\right)"=\sin 2x$. Вот и проверим, правда ли, что производная от $\left(-\frac{1}{2}\cos 2x+C\right)$ равна подынтегральной функции $\sin 2x$:

$$ \left(-\frac{1}{2}\cos 2x+C\right)"=\left(-\frac{1}{2}\cos 2x\right)"+C"=-\frac{1}{2}\cdot(\cos 2x)"+0=\\ =-\frac{1}{2}\cdot (-\sin 2x)\cdot (2x)"=-\frac{1}{2}\cdot (-\sin 2x)\cdot 2=\sin 2x. $$

Проверка пройдена успешно. Равенство $\left(-\frac{1}{2}\cos 2x+C\right)"=\sin 2x$ выполнено, поэтому формула $\int \sin2x dx=-\frac{1}{2}\cos 2x+C$ верна. В примере №5 также осуществим проверку результата, дабы убедиться в его правильности. Наличие проверки не является обязательным, хотя в некоторых типовых расчётах и контрольных работах требование проверять результат присутствует.

Дифференциальные уравнения (ДУ). Эти два слова обычно приводят в ужас среднестатистического обывателя. Дифференциальные уравнения кажутся чем-то запредельным и трудным в освоении и многим студентам. Уууууу… дифференциальные уравнения, как бы мне всё это пережить?!

Такое мнение и такой настрой в корне неверен, потому-что на самом делеДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ – ЭТО ПРОСТО И ДАЖЕ УВЛЕКАТЕЛЬНО . Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Чем качественнее изучены темы Производная функции одной переменной иНеопределенный интеграл , тем будет легче разобраться в дифференциальных уравнениях. Скажу больше, если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Потому что придется много интегрировать. И дифференцировать. Такженастоятельно рекомендую научиться находить производную от функции, заданной неявно .

В 95% случаев в контрольных работах встречаются 3 типа дифференциальных уравнений первого порядка: уравнения с разделяющимися переменными, которые мы рассмотрим на этом уроке; однородные уравнения и линейные неоднородные уравнения . Начинающим изучать диффуры советую ознакомиться с уроками именно в таком порядке. Есть еще более редкие типы дифференциальных уравнений: уравнения в полных дифференциалах , уравнения Бернулли и некоторые другие. Наиболее важными из двух последних видов являются уравнения в полных дифференциалах, поскольку помимо данного ДУ я рассматриваю новый материал – частное интегрирование.

Сначала вспомним обычные уравнения. Они содержат переменные и числа. Простейший пример: . Что значит решить обычное уравнение? Это значит, найти множество чисел , которые удовлетворяют данному уравнению. Легко заметить, что детское уравнение имеет единственный корень: . Для прикола сделаем проверку, подставим найденный корень в наше уравнение:

– получено верное равенство, значит, решение найдено правильно.

Диффуры устроены примерно так же!

Дифференциальное уравнение первого порядка , содержит :
1) независимую переменную ;
2) зависимую переменную (функцию);
3) первую производную функции: .

В некоторых случаях в уравнении первого порядка может отсутствовать «икс» или (и) «игрек» – важно чтобы в ДУ была первая производная , и не было производных высших порядков – , и т.д.

Что значит ? Решить дифференциальное уравнение – это значит, найти множество функций , которые удовлетворяют данному уравнению. Такое множество функций называется общим решением дифференциального уравнения .

Пример 1

Решить дифференциальное уравнение

Полный боекомплект. С чего начать решение любого дифференциального уравнения первого порядка?

В первую очередь нужно переписать производную немного в другом виде. Вспоминаем громоздкое обозначение производной: . Такое обозначение производной многим из вас наверняка казалось нелепым и ненужным, но в диффурах рулит именно оно!

Итак, на первом этапе переписываем производную в нужном нам виде:

На втором этапе всегда смотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говоря, в левой части нам нужно оставить только «игреки» , а в правой части организовать только «иксы» . Разделение переменных выполняется с помощью «школьных» манипуляций: вынесение за скобки, перенос слагаемых из части в часть со сменой знака, перенос множителей из части в часть по правилу пропорции и т.п.

Дифференциалы и – это полноправные множители и активные участники боевых действий. В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции:

Переменные разделены. В левой части – только «игреки», в правой части – только «иксы».

Следующий этап – интегрирование дифференциального уравнения . Всё просто, навешиваем интегралы на обе части:

Разумеется, интегралы нужно взять. В данном случае они табличные:

Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу достаточно записать один раз. Почти всегда её приписывают в правой части.

Строго говоря, после того, как взяты интегралы, дифференциальное уравнение считается решенным. Единственное, у нас «игрек» не выражен через «икс», то есть решение представлено в неявном виде. Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения . То есть, – это общий интеграл.

Теперь нужно попробовать найти общее решение, то есть попытаться представить функцию в явном виде.

Пожалуйста, запомните первый технический приём, он очень распространен и часто применяется в практических заданиях. Когда в правой части после интегрирования появляется логарифм, то константу почти всегда целесообразно записать тоже под логарифмом.

То есть, вместо записи обычно пишут .

Здесь – это такая же полноценная константа, как и . Зачем это нужно? А для того, чтобы легче было выразить «игрек». Используем школьное свойство логарифмов: . В данном случае:

Теперь логарифмы и модули можно с чистой совестью убрать с обеих частей:

Функция представлена в явном виде. Это и есть общее решение.

Множество функций является общим решением дифференциального уравнения .

Придавая константе различные значения, можно получить бесконечно много частных решений дифференциального уравнения. Любая из функций , , и т.д. будет удовлетворять дифференциальному уравнению .

Иногда общее решение называют семейством функций . В данном примере общее решение – это семейство линейных функций, а точнее, семейство прямых пропорциональностей.

Многие дифференциальные уравнения довольно легко проверить. Делается это очень просто, берём найденное решение и находим производную:

Подставляем наше решение и найденную производную в исходное уравнение :

– получено верное равенство, значит, решение найдено правильно. Иными словами, общее решение удовлетворяет уравнению .

После обстоятельного разжевывания первого примера уместно ответить на несколько наивных вопросов о дифференциальных уравнениях.

1) В этом примере нам удалось разделить переменные: . Всегда ли это можно сделать? Нет, не всегда. И даже чаще переменные разделить нельзя. Например, воднородных уравнениях первого порядка , необходимо сначала провести замену. В других типах уравнений, например, в линейном неоднородном уравнении первого порядка , нужно использовать различные приёмы и методы для нахождения общего решения. Уравнения с разделяющимися переменными, которые мы рассматриваем на первом уроке – простейший тип дифференциальных уравнений.

2) Всегда ли можно проинтегрировать дифференциальное уравнение? Нет, не всегда. Очень легко придумать «навороченное» уравнение, которое не проинтегрировать, кроме того, существуют неберущиеся интегралы. Но подобные ДУ можно решить приближенно с помощью специальных методов. Даламбер и Коши гарантируют. …тьфу, lurkmore.ru давеча начитался.

3) В данном примере мы получили решение в виде общего интеграла . Всегда ли можно из общего интеграла найти общее решение, то есть, выразить «игрек» в явном виде? Нет не всегда. Например: . Ну и как тут выразить «игрек»?! В таких случаях ответ следует записать в виде общего интеграла. Кроме того, иногда общее решение найти можно, но оно записывается настолько громоздко и коряво, что уж лучше оставить ответ в виде общего интеграла

Торопиться не будем. Еще одно простое ДУ и еще один типовой приём решения.

Пример 2

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию

По условию требуется найти частное решение ДУ, удовлетворяющее начальному условию. Такая постановка вопроса также называется задачей Коши .

Сначала находим общее решение. В уравнении нет переменной «икс», но это не должно смущать, главное, в нём есть первая производная.

Переписываем производную в нужном виде:

Очевидно, что переменные можно разделить, мальчики – налево, девочки – направо:

Интегрируем уравнение:

Общий интеграл получен. Здесь константу я нарисовал с надстрочной звездочкой, дело в том, что очень скоро она превратится в другую константу.

Теперь пробуем общий интеграл преобразовать в общее решение (выразить «игрек» в явном виде). Вспоминаем старое, доброе, школьное: . В данном случае:

Константа в показателе смотрится как-то некошерно, поэтому её обычно спускают с небес на землю. Если подробно, то происходит это так. Используя свойство степеней, перепишем функцию следующим образом:

Если – это константа, то – тоже некоторая константа, которую обозначим через букву :

Запомните «снос» константы, это второй технический приём, который часто используют в ходе решения дифференциальных уравнений.

Итак, общее решение: . Такое вот симпатичное семейство экспоненциальных функций.

На завершающем этапе нужно найти частное решение, удовлетворяющее заданному начальному условию . Это тоже просто.

В чём состоит задача? Необходимо подобрать такое значение константы , чтобы выполнялось заданное начальное условие .

Оформить можно по-разному, но понятнее всего, пожалуй, будет так. В общее решение вместо «икса» подставляем ноль, а вместо «игрека» двойку:



То есть,

Стандартная версия оформления:

В общее решение подставляем найденное значение константы :
– это и есть нужное нам частное решение.

Выполним проверку. Проверка частного решение включает в себя два этапа.

Сначала необходимо проверить, а действительно ли найденное частное решение удовлетворяет начальному условию ? Вместо «икса» подставляем ноль и смотрим, что получится:
– да, действительно получена двойка, значит, начальное условие выполняется.

Второй этап уже знаком. Берём полученное частное решение и находим производную:

Подставляем и в исходное уравнение :


– получено верное равенство.

Вывод: частное решение найдено правильно.

Переходим к более содержательным примерам.

Пример 3

Решить дифференциальное уравнение

Решение: Переписываем производную в нужном нам виде:

Оцениваем, можно ли разделить переменные? Можно. Переносим второе слагаемое в правую часть со сменой знака:

И перекидываем множители по правилу пропорции:

Переменные разделены, интегрируем обе части:

Должен предупредить, приближается судный день. Если вы плохо изучили неопределенные интегралы , прорешали мало примеров, то деваться некуда – придется их осваивать сейчас.

Интеграл левой части легко найти , с интегралом от котангенса расправляемся стандартным приемом, который мы рассматривали на уроке Интегрирование тригонометрических функций в прошлом году:


В правой части у нас получился логарифм, согласно моей первой технической рекомендации, в этом случае константу тоже следует записать под логарифмом.

Теперь пробуем упростить общий интеграл. Поскольку у нас одни логарифмы, то от них вполне можно (и нужно) избавиться. Максимально «упаковываем» логарифмы. Упаковка проводится с помощью трёх свойств:


Пожалуйста, перепишите эти три формулы к себе в рабочую тетрадь, при решении диффуров они применяются очень часто.

Решение распишу очень подробно:


Упаковка завершена, убираем логарифмы:

Можно ли выразить «игрек»? Можно. Надо возвести в квадрат обе части. Но делать этого не нужно.

Третий технический совет: Если для получения общего решения нужно возводить в степень или извлекать корни, то в большинстве случаев следует воздержаться от этих действий и оставить ответ в виде общего интеграла. Дело в том, что общее решение будет смотреться вычурно и ужасно – с большими корнями, знаками .

Поэтому ответ запишем в виде общего интеграла. Хорошим тоном считается представить общий интеграл в виде , то есть, в правой части, по возможности, оставить только константу. Делать это не обязательно, но всегда же выгодно порадовать профессора;-)

Ответ: общий интеграл:

Примечание: общий интеграл любого уравнения можно записать не единственным способом. Таким образом, если у вас не совпал результат с заранее известным ответом, то это еще не значит, что вы неправильно решили уравнение.

Общий интеграл тоже проверяется довольно легко, главное, уметь находить производные от функции, заданной неявно . Дифференцируем ответ:

Умножаем оба слагаемых на :

И делим на :

Получено в точности исходное дифференциальное уравнение , значит, общий интеграл найден правильно.

Пример 4

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Это пример для самостоятельного решения. Напоминаю, что задача Коши состоит из двух этапов:
1) Нахождение общего решение.
2) Нахождение частного решения.

Проверка тоже проводится в два этапа (см. также образец Примера 2), нужно:
1) Убедиться, что найденное частное решение действительно удовлетворяет начальному условию.
2) Проверить, что частное решение вообще удовлетворяет дифференциальному уравнению.

Полное решение и ответ в конце урока.

Пример 5

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Решение: Сначала найдем общее решение.Данное уравнение уже содержит готовые дифференциалы и , а значит, решение упрощается. Разделяем переменные:

Интегрируем уравнение:

Интеграл слева – табличный, интеграл справа – берем методом подведения функции под знак дифференциала :

Общий интеграл получен, нельзя ли удачно выразить общее решение? Можно. Навешиваем логарифмы:

(Надеюсь, всем понятно преобразование , такие вещи надо бы уже знать)

Итак, общее решение:

Найдем частное решение, соответствующее заданному начальному условию . В общее решение вместо «икса» подставляем ноль, а вместо «игрека» логарифм двух:

Более привычное оформление:

Подставляем найденное значение константы в общее решение.

Ответ: частное решение:

Проверка: Сначала проверим, выполнено ли начальное условие :
– всё гуд.

Теперь проверим, а удовлетворяет ли вообще найденное частное решение дифференциальному уравнению. Находим производную:

Смотрим на исходное уравнение: – оно представлено в дифференциалах. Есть два способа проверки. Можно из найденной производной выразить дифференциал :

Подставим найденное частное решение и полученный дифференциал в исходное уравнение :

Используем основное логарифмическое тождество :

Получено верное равенство, значит, частное решение найдено правильно.

Второй способ проверки зеркален и более привычен: из уравнения выразим производную, для этого разделим все штуки на :

И в преобразованное ДУ подставим полученное частное решение и найденную производную . В результате упрощений тоже должно получиться верное равенство.

Пример 6

Решить дифференциальное уравнение . Ответ представить в виде общего интеграла .

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Какие трудности подстерегают при решении дифференциальных уравнений с разделяющимися переменными?

1) Не всегда очевидно (особенно, чайнику), что переменные можно разделить. Рассмотрим условный пример: . Здесь нужно провести вынесение множителей за скобки: и отделить корни: . Как действовать дальше – понятно.

2) Сложности при самом интегрировании. Интегралы нередко возникают не самые простые, и если есть изъяны в навыках нахождения неопределенного интеграла , то со многими диффурами придется туго. К тому же у составителей сборников и методичек популярна логика «раз уж дифференциальное уравнение является простым, то пусть интегралы будут посложнее».

3) Преобразования с константой. Как все заметили, с константой в дифференциальных уравнениях можно делать практически всё, что угодно. И не всегда такие преобразования понятны новичку. Рассмотрим еще один условный пример: . В нём целесообразно умножить все слагаемые на 2: . Полученная константа – это тоже какая-то константа, которую можно обозначить через : . Да, и коль скоро в правой части логарифм, то константу целесообразно переписать в виде другой константы: .

Беда же состоит в том, что частенько не заморачиваются с индексами, и используют одну и ту же букву . И в результате запись решения принимает следующий вид:

Что за фигня? Тут же ошибки. Формально – да. А неформально – ошибки нет, подразумевается, что при преобразовании константы всё равно получается какая-то другая константа .

Или такой пример, предположим, что в ходе решения уравнения получен общий интеграл . Такой ответ выглядит некрасиво, поэтому целесообразно сменить у всех множителей знаки: . Формально по записи тут опять ошибка, следовало бы записать . Но неформально подразумевается, что – это всё равно какая-то другая константа (тем более может принимать любое значение), поэтому смена у константы знака не имеет никакого смысла и можно использовать одну и ту же букву .

Я буду стараться избегать небрежного подхода, и всё-таки проставлять у констант разные индексы при их преобразовании.

Пример 7

Решить дифференциальное уравнение . Выполнить проверку.

Решение: Данное уравнение допускает разделение переменных. Разделяем переменные:

Интегрируем:

Константу тут не обязательно определять под логарифм, поскольку ничего путного из этого не получится.

Ответ: общий интеграл:

Проверка: Дифференцируем ответ (неявную функцию):

Избавляемся от дробей, для этого умножаем оба слагаемых на :

Получено исходное дифференциальное уравнение, значит, общий интеграл найден правильно.

Пример 8

Найти частное решение ДУ.
,

Это пример для самостоятельного решения. Единственный комментарий, здесь получится общий интеграл, и, правильнее говоря, нужно исхитриться найти не частное решение, ачастный интеграл . Полное решение и ответ в конце урока.

Как уже отмечалось, в диффурах с разделяющимися переменными нередко вырисовываются не самые простые интегралы. И вот еще парочка таких примеров для самостоятельного решения. Рекомендую всем прорешать примеры №№9-10, независимо от уровня подготовки, это позволит актуализировать навыки нахождения интегралов или восполнить пробелы в знаниях.

Пример 9

Решить дифференциальное уравнение

Пример 10

Решить дифференциальное уравнение

Помните, что общий интеграл можно записать не единственным способом, и внешний вид ваших ответов может отличаться от внешнего вида моих ответов. Краткий ход решения и ответы в конце урока.

Успешного продвижения!

Пример 4: Решение: Найдем общее решение. Разделяем переменные:


Интегрируем:



Общий интеграл получен, пытаемся его упростить. Упаковываем логарифмы и избавляемся от них:

При решении некоторых типов интегралов выполняется преобразование, как говорят внесение под знак дифференциала . Это делается, чтобы получить интеграл табличного вида и легко его взять. Для этого применяется формула: $$ f"(x) dx = d(f(x)) $$

Хочется отметить такой важный нюанс, над которым задумываются студенты. Чем же отличается этот метод от способа замены переменной (подстановки)? Это то же самое, только в записях выглядит по-разному. И то и другое верно.

Формула

Если в подынтегральной функции прослеживается произведение двух функций, одна из которых является дифференциалом другой, тогда внесите под знак дифференциала нужную функцию. Выглядит это следующим образом:

$$ \int f(\varphi(x)) \varphi"(x) dx = \int f(\varphi(x)) d(\varphi(x))=\int f(u) du $$ $$ u=\varphi(x) $$

Подведение основных функций

Для того, чтобы успешно использовать такой способ решения, необходимо знать таблицы производных и интегрирования. Из них вытекают следующие формулы:

$ dx = d(x+c), c=const $ $ -\sin x dx=d(\cos x) $
$ dx=\frac{1}{a} d(ax) $ $ \cos x dx = d(\sin x) $
$ xdx=\frac{1}{2} d(x^2+a) $ $ \frac{dx}{x} = d(\ln x) $
$ -\frac{dx}{x^2}= d(\frac{1}{x}) $ $ \frac{dx}{\cos^2 x} = d(tg x) $
$$ \int f(kx+b)dx = \frac{1}{k} \int f(kx+b)d(kx+b) = \frac{1}{k} F(kx+b) + C $$

Примеры решений

Пример 1
Найти интеграл $$ \int \sin x \cos x dx $$
Решение

В данном примере можно занести под знак дифференциала любую из предложенных функций, хоть синус, хоть косинус. Для того, чтобы не путаться со сменой знаков удобнее занести $ \соs x $. Используя формулы имеем:

$$ \int \sin x \cos xdx = \int \sin x d(\sin x) = \frac{1}{2} \sin^2 x + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \int \sin x \cos x dx = \frac{1}{2} \sin^2 x + C $$

Итак, в статье разобрали как решаются некоторые виды интегралов методом занесения под знак дифференциала. Вспомнили дифференциалы часто распространенных элементарных функций. Если не получается или не хватает времени решить задачи контрольных работ самостоятельно, то мы окажем Вам свою помощь в кратчайшие сроки. Достаточно заполнить форму заказа и мы свяжемся с Вами.

Рассказать друзьям