Двойные интегралы в сферических координатах. Замена переменных в двойном интеграле

💖 Нравится? Поделись с друзьями ссылкой

Скачать с Depositfiles

Тройной интеграл.

Контрольные вопросы.

    Тройной интеграл, его свойства.

    Замена переменных в тройном интеграле. Вычисление тройного интеграла в цилиндрических координатах.

    Вычисление тройного интеграла в сферических координатах.

Пусть функция u = f (x,y ,z ) определена в ограниченной замкнутой области V пространства R 3 . Разобьём область V произвольным образом наn элементарных замкнутых областей V 1 , … , V n , имеющих объемы  V 1 , …, V n соответственно. Обозначим d – наибольший из диаметров областей V 1 , … , V n . В каждой области V k выберем произвольную точку P k (x k , y k , z k )и составим интегральную сумму функции f (x , y , z )

S =

Определение. Тройным интегралом от функции f (x , y , z ) по области V называется предел интегральной суммы
, если он существует.

Таким образом,



(1)

Замечание. Интегральная сумма S зависит от способа разбиения области V и выбора точек P k (k =1, …, n ). Однако, если существует предел, то он не зависит от способа разбиения области V и выбора точек P k . Если сравнить определения двойного и тройного интегралов, то легко увидеть в них полную аналогию.

Достаточное условие существования тройного интеграла. Тройной интеграл (13) существует, если функция f (x , y , z ) ограничена в V и непрерывна в V , за исключением конечного числа кусочно-гладких поверхностей, расположенных в V .

Некоторые свойства тройного интеграла.

1) Если С – числовая константа, то


3) Аддитивностьпо области. Если область V разбита на области V 1 и V 2 , то

4) Объем тела V равен


(2 )

Вычисление тройного интеграла в декартовых координатах.

Пусть D проекция тела V на плоскость xOy , поверхности z =φ 1 (x , y ), z =φ 2 (x , y ) ограничивают тело V снизу и сверху соответственно. Это значит, что

V = {(x , y , z ): (x , y )D , φ 1 (x , y ) ≤ z ≤ φ 2 (x , y )}.

Такое тело назовем z -цилиндрическим. Тройной интеграл (1) по z -цилиндрическому телу V вычисляется переходом к повторному интегралу, состоящему из двойного и определенного интегралов:




(3 )

В этом повторном интеграле сначала вычисляется внутренний определенный интеграл по переменной z , при этом x , y считаются постоянными. Затем вычисляется двойной интеграл от полученной функции по области D .

Если V x- цилиндрическое или y- цилиндрическое тело, то верны соответственно формулы



В первой формуле D проекция тела V на координатную плоскость yOz , а во второй  на плоскость xOz

Примеры. 1) Вычислитьобъем тела V , ограниченного поверхностями z = 0, x 2 + y 2 = 4, z = x 2 + y 2 .

Решение. Вычислим объём при помощи тройного интеграла по формуле (2)

Перейдем к повторному интегралу по формуле (3).

Пусть D  круг x 2 + y 2 4, φ 1 (x , y ) = 0, φ 2 (x , y )= x 2 + y 2 . Тогда по формуле (3) получим


Для вычисления этого интеграла перейдем к полярным координатам. При этом круг D преобразуется во множество

D r = { (r , φ ) : 0 ≤ φ < 2 π , 0 ≤ r ≤ 2} .



2) Тело V ограничено поверхностямиz=y , z= –y , x= 0 , x= 2, y= 1. Вычислить

Плоскости z = y , z = –y ограничиваюттелосоответственно снизу и сверху, плоскости x= 0 , x= 2 ограничивают тело соответственно сзади и спереди, а плоскость y= 1 ограничиваетсправа. V – z- цилиндрическое тело, его проекцией D на плоскость хОу является прямоугольник ОАВС . Положим φ 1 (x , y ) = –y

Пусть дано материальное тело, представляющее собой пространственную область П, заполненную массой. Требуется найти массу m этого тела при условии, что в каждой точке Р € П известна плотность распределения масс. Разобьем область П на неперекрывающиеся кубируемые (т. е. имеющие объем) части с объемами соответственно. В каждой из частичных областей ft* выберем произвольнуюточкуР*. Примем приближенно, что в пределах частичной области ft* плотность постоянна и равна /*(Р*). Тогда масса Атк этой части тела выразится приближенным равенством Атпк а масса всего тела будет приближенно равна Тройной интеграл Свойства тройных интегралов Вычисление тройного интеграла в декартовых координатах Вычисление тройного интеграла в цилиндрических и сферических координатах Пусть d - наибольший из диаметров частичных областей Если при d -* 0 сумма (1) имеет конечный предел, не зависящий ни от способа разбиения области ft на частичные подобласти, ни от выбора точек Р* € ft*, то этот предел принимается за массу m заданного тела, Пусть в замкнутой кубируемой области ft определена ограниченная функция Разобьем ft на п непересекающихся кубируемых частей а их объемы обозначим через соответственно. В каждой частичной подобласти П* произвольным образом выбираем точку Рк(хк, ук, zk) и составляем интегральную сумму Пусть d - наибольший из диаметров частичных областей Определение. Если при d О интегральные суммы а имеют предел, не зависящий ни от способа разбиения области Л на частичные подобласти П*, ни от выбора точек Рк € П*, то этот предел называется тройнич интегралам от функции f(x} у, z) по области Q и обозначается символом Теорема 6. Если функция f(x, у, z) непрерывна в замкнутой кубируемой области П, то она интегрируема в этой области. Свойства тройных интегралов Свойства тройных интегралов аналогичны свойствам двойных интегралоа Перечислим основные из них. Пусть функции интегрируемы в кубируемой области Л. 1. Линейность. При этом функция называется интегрируемой в области Q. Таким образом, по определению имеем Возвращаясь к задаче о вычислении массы тела, замечаем, что предел (2) есть тройной интеграл огт фуншни р(Р) по области П. Значит, Здесь dx dy dz - элемент объема dv в прямоугольных координатах. где а и (3 - произвольные вещественные постоянные. всюду в области П,то 3. Если /(Р) = 1 в области П, то п где V - объем области Q. Если функция /(Р) непрерывна в замкнутой кубируемой области ft и М и т - ее наибольшее и наименьшее значения в ft, то где V - объем области ft. 5. Аддитивность. Если область ft разбита на кубируемые области без общих внутренних точек и f{P) интегрируема в области ft, то f(P) интегрируема на каждой из областей ft| и ft2, причем 6. Теорема о среднем значении. Теореме 7 (о среднем значении). Если функция f(P) непрерывна в замкнутой кубируемой области ft, то найдется тонка Рс € ft, такая, что будет справедлива формула где V - объем области ft (напомним, что область - связное множество). § 7. Вычисление тройного интеграла в декартовых координатах Как и при вычислении двойных интегралов, дело сводится к вычислению повторных интегралов. Предположим, что функция непрерывна в некоторой области ft. 1-й случай. Область ft представляет собой прямоугольный параллелепипед проектирующийся на плоскость yOz в прямоугольник i2; Тогда получим Заменяя двойной интеграл через повторный, окончательно получим Таким образом, в случае, когда область П - прямоугольный параллелепипед, мы свели вычисление тройного интеграла к последовательному вычислению трех обыкновенных интегралов. Формулу (2) можно переписать в виде где прямоугольник есть ортогональная проекция параллелепипеда П на плоскость хОу. 2-й случай. Рассмотрим теперь область Q такую, что ограничивающая ее поверхность 5 пересекается любой прямой, параллельной оси Oz, не более чем в двух точках или по целому отрезку (рис.22). Пусть z = tpi(x,y) уравнение поверхности 5, ограничивающей область П снизу, а поверхность S2, ограничивающая область П сверху, имеет уравнение z = у). Пусть обе поверхности S\ и S2 проектируются на одну и ту же область плоскости хОу. Обозначим ее через D, а ограничивающую ее кривую через L. Остальная часть границы 5 тела Q лежит на цилиндрической поверхности с образующими, параллельными оси Oz, и с кривой L в роли направляющей. Тогда по аналогии с формулой (3) получим Если область D плоскости хОу представляет собой криволинейную трапецию, ограниченную двумя кривыми, то двойной интеграл в формуле (4) можно свести к повторному, и мы получим окончательно Эта формула является обобщением формулы (2). Рис-23 Пример. Вычислить объем тетраэдра, ограниченного плоскостями Проекцией тетраэдра на плоскость хОу служит треугольник, образованный прямыми так что х изменяется от 0 до 6, а при фиксированном х (0 ^ х ^ 6) у изменяется от 0 до 3 - | (рис. 23). Если же фиксированы и х, и у, то точка может перемещаться по вертикали от плоскости до плоскости меняется в пределах от 0 до 6 - х - 2у. По формуле получаем §8. Вычисление тройного интеграла в цилиндрических и сферических координатах Вопрос о замене переменных в тройном интеграле решается таким же путем, как и в случае двойного интеграла. Пусть функция /(ж, у, z) непрерывна в замкнутой кубируемой области ft, а функции непрерывны вместе со своими частными производными первого порядка в замкнутой кубируемой области ft*. Предположим, что функции (1) устанавливают взаимнооднозначное соответствие между всеми точками rj, {) области ft*, с одной стороны, и всеми точками (ж, у, z) области ft - с другой. Тогда справедлива формула замены переменных в тройном интеграле - где - якобиан системы функций (1). На практике при вычислении тройных интеграловчасто пользуются заменой прямоугольных координат цилиндрическими и сферическими координатами. 8.1. Тройной интеграл в цилиндрических координатах В цилиндрической системе координат положение точки Р в пространстве определяется тремя числами р, где р и (р - полярные координаты проекции Р1 точки Р на плоскость хОу, a z - аппликата точки Р (рис.24). Числа называются цилиндрическими координатами точии Р. Ясно, что В системе цилиндрических координат координатные поверхности Тройной интеграл Свойства тройных интегралов Вычисление тройного интеграла в декартовых координатах Вычисление тройного интеграла в цилиндрических и сферических координатах соответственно описывают: круговой цилиндр, ось которого совпадает с осью Oz, полуплоскость, примыкающую к оси Oz, и плоскость, параллельную плоскости хОу. Цилиндрические координаты связаны с декартовыми следующими формулами (см. рис. 24). Для системы (3), отображающей область ft на область имеем и формула (2) перехода от тройного интеграла в прямоугольных координатах к интегралу в цилиндрических координатах принимает вид (4) Выражение называется элементом объема в цилиндрических координатах. Это выражение для элемента объема может быть получено и из геометрических соображений. Разобьем область П на элементарные подобласти координатными поверхностями и вычислим объемы полученных криволинейных призм (рис. 25). Видно, что Отбрасывая бесконечно малую величину более высокого порядка, получаем Это позволяет принять за элемент объема в цилиндрических координатах следующую величину Пример 1. Найти объем тела, ограниченного поверхностями 4 В цилиндрических координатах заданные поверхности будут иметь уравнения (см. формулы (3)). Эти поверхности пересекаются по линии г, которая описывается системой уравнений (цилиндр), (плоскость), рис 26 а ее проекция на плоскость хОу системой Таким образом, Искомый объем вычисляется по формуле (4), в которой. Тройной интеграл в сферических координатах В сферической системе координат положение точки Р(х, у, z) в пространстве определяется тремя числами, где г - расстояние от начала координат до точки угол между осью Ох и проекцией радиуса-вектора ОР точки Р на плоскость хОу, а в - угол между осью Oz и радиусом-вектором ОР точки Р, отсчитываемый от оси Oz (рис. 27). Ясно, что. Координатные поверхности в этой системе координат: г = const - сферы с центром в начале координат; ip = constполуплоскости, исходящие из оси Oz; в = const - круговые конусы с осью Oz. Рис. 27 Из рисунка видно, что сферические и декартовы координаты связаны следующими соотношениями Вычислим якобиан функций (5). Имеем Следовательно, и формула (2) принимает вид Элемент объема в сферических координатах - Выражение для элемента объема можно получить и из геометрических соображений. Рассмотрим элементарную область в пространстве, ограниченную сферами радиусов г и г + dr, конусами в и в + d$ и полуплоскостями Приближенно эту область можно считать прямоугольным параллелепипедом с измерениями. Тогда Тройной интеграл Свойства тройных интегралов Вычисление тройного интеграла в декартовых координатах Вычисление тройного интеграла в цилиндрических и сферических координатах Пример 2. Найти объем выпуклого тела Q, вырезаемого из конуса концентрическими сферами -4 Переходим к сферической системе координат Из первых двух уравнений видно, что. Из третьего уравнения находим пределы изменен угла 9: откуда

Примеры решений произвольных тройных интегралов.
Физические приложения тройного интеграла

Во 2-й части урока мы отработаем технику решения произвольных тройных интегралов , у которых подынтегральная функция трёх переменных в общем случае отлична от константы и непрерывна в области ; а также познакомимся с физическими приложениями тройного интеграла

Вновь прибывшим посетителям рекомендую начать с 1-й части, где мы рассмотрели основные понятия и задачу нахождения объема тела с помощью тройного интеграла . Остальным же предлагаю немного повторить производные функции трёх переменных , поскольку в примерах данной статьи мы будем использовать обратную операцию – частное интегрирование функции .

Кроме того, есть ещё один немаловажный момент: если у Вас неважное самочувствие, то прочтение этой странички по возможности лучше отложить. И дело не только в том, что сейчас возрастёт сложность вычислений – у большинства тройных интегралов нет надёжных способов ручной проверки, поэтому к их решению крайне нежелательно приступать в утомлённом состоянии. При пониженном тонусе целесообразно порешать что-нибудь попроще либо просто отдохнуть (я терпелив, подожду =)), чтобы в другой раз со свежей головой продолжить расправу над тройными интегралами:

Пример 13

Вычислить тройной интеграл

На практике тело также обозначают буквой , но это не очень хороший вариант, ввиду того, «вэ» «зарезервировано» под обозначение объёма.

Сразу скажу, чего делать НЕ НАДО. Не нужно пользоваться свойствами линейности и представлять интеграл в виде . Хотя если очень хочется, то можно. В конце концов, есть и небольшой плюс – запись будет хоть и длинной, но зато менее загромождённой. Но такой подход всё-таки не стандартен.

В алгоритме решения новизны будет немного. Сначала нужно разобраться с областью интегрирования. Проекция тела на плоскость представляет собой до боли знакомый треугольник:

Сверху тело ограничено плоскостью , которая проходит через начало координат. Предварительно, к слову, нужно обязательно проверить (мысленно либо на черновике) , не «срезает» ли эта плоскость часть треугольника. Для этого находим её линию пересечения с координатной плоскостью , т.е. решаем простейшую систему: – нет, данная прямая (на чертеже отсутствует) «проходит мимо», и проекция тела на плоскость действительно представляет собой треугольник.

Не сложен здесь и пространственный чертёж:

В действительности можно было ограничиться только им, поскольку проекция очень простая. …Ну, или только чертежом проекции, так как тело тоже простое =) Однако совсем ничего не чертить, напоминаю – плохой выбор.

Ну и, само собой, не могу не порадовать вас заключительной задачей:

Пример 19

Найти центр тяжести однородного тела, ограниченного поверхностями , . Выполнить чертежи данного тела и его проекции на плоскость .

Решение : искомое тело ограничено координатными плоскостями и плоскостью , которую в целях последующего построения удобно представить в отрезках : . Выберем «а» за единицу масштаба и выполним трёхмерный чертёж:

На чертеже уже поставлена готовая точка центра тяжести, однако, пока мы её не знаем.

Проекция тела на плоскость очевидна, но, тем не менее, напомню, как её найти аналитически – ведь такие простые случаи встречаются далеко не всегда. Чтобы найти прямую, по которой пересекаются плоскости нужно решить систему:

Подставляем значение в 1-е уравнение: и получаем уравнение «плоской» прямой :

Координаты центра тяжести тела вычислим по формулам
, где – объём тела.

Преобразование двойного интеграла от прямоугольных координат ,к полярным координатам
, связанных с прямоугольными координатами соотношениями
,
, осуществляется по формуле

Если область интегрирования
ограничена двумя лучами
,
(
), выходящими из полюса, и двумя кривыми
и
, то двойной интеграл вычисляют по формуле

.

Пример 1.3. Вычислить площадь фигуры, ограниченной данными линиями:
,
,
,
.

Решение. Для вычисления площади области
воспользуемся формулой:
.

Изобразим область
(рис. 1.5). Для этого преобразуем кривые:

,
,

,
.

Перейдем к полярным координатам:

,
.

.

В полярной системе координат область
описывается уравнениями:




.

1.2. Тройные интегралы

Основные свойства тройных интегралов аналогичны свойствам двойных интегралов.

В декартовых координатах тройной интеграл обычно записывают так:

.

Если
, то тройной интеграл по областичисленно равен объему тела:

.

Вычисление тройного интеграла

Пусть область интегрирования ограничена снизу и сверху соответственно однозначными непрерывными поверхностями
,
, причем проекция областина координатную плоскость
есть плоская область
(рис. 1.6).

Тогда при фиксированных значениях
соответствующие аппликатыточек областиизменяются в пределах.

Тогда получаем:

.

Если, кроме того, проекция
определяется неравенствами

,
,

где
- однозначные непрерывные функции на
, то

.

Пример 1.4. Вычислить
, где- тело, ограниченное плоскостями:

,
,
,
(
,
,
).

Решение. Областью интегрирования является пирамида (рис. 1.7). Проекция области есть треугольник
, ограниченный прямыми
,
,
(рис. 1.8). При
аппликаты точек
удовлетворяют неравенству
, поэтому

.

Расставляя пределы интегрирования для треугольника
, получим

Тройной интеграл в цилиндрических координатах

При переходе от декартовых координат
к цилиндрическим координатам
(рис. 1.9), связанных с
соотношениями
,
,
, причем

,
,,

тройной интеграл преобразуется:

Пример 1.5. Вычислить объем тела, ограниченного поверхностями:
,
,
.

Решение. Искомый объем тела равен
.

Областью интегрирования является часть цилиндра, ограниченного снизу плоскостью
, а сверху плоскостью
(рис. 1.10). Проекция областиесть круг
с центром в начале координат и единичном радиусом.

Перейдем к цилиндрическим координатам.
,
,
. При
аппликаты точек
, удовлетворяют неравенству

или в цилиндрических координатах:

Область
, ограниченная кривой
, примет вид, или
, при этом полярный угол
. В итоге имеем

.

2. Элементы теории поля

Напомним предварительно способы вычисления криволинейных и поверхностных интегралов.

Вычисление криволинейного интеграла по координатам от функций, определенных на кривой , сводится к вычислению определенного интеграла вида

если кривая задана параметрическии
соответствует начальной точке кривой, а
- ее конечной точке.

Вычисление поверхностного интеграла от функции
, определенной на двусторонней поверхности, сводится к вычислению двойного интеграла, например, вида

,

если поверхность , заданная уравнением
, однозначно проецируется на плоскость
в область
. Здесь- угол между единичным вектором нормалик поверхностии осью
:

.

Требуемая условиями задачи сторона поверхности определяется выбором соответствующего знака в формуле (2.3).

Определение 2.1. Векторным полем
называется векторная функция точки
вместе с областью ее определения:

Векторное поле
характеризуется скалярной величиной –дивергенцией:

Определение 2.2. Потоком векторного поля
через поверхность называется поверхностный интеграл:

,

где - единичный вектор нормали к выбранной стороне поверхности, а
- скалярное произведение векторови.

Определение 2.3. Циркуляцией векторного поля

по замкнутой кривой называется криволинейный интеграл

,

где
.

Формула Остроградского-Гаусса устанавливает связь между потоком векторного поля через замкнутую поверхность и дивергенцией поля:

где - поверхность, ограниченная замкнутым контуром , а - единичный вектор нормали к этой поверхности. Направление нормали должно быть согласовано с направлением обхода контура .

Пример 2.1. Вычислить поверхностный интеграл

,

где - внешняя часть конуса
(
), отсекаемая плоскостью
(рис 2.1).

Решение. Поверхность однозначно проецируется в область
плоскости
, и интеграл вычисляется по формуле (2.2).

Единичный вектор нормали к поверхности найдем по формуле (2.3):

.

Здесь в выражении для нормали выбран знак плюс, так как угол между осью
и нормалью- тупой и, следовательно,
должен быть отрицательным. Учитывая, что
, на поверхностиполучаем

Область
есть круг
. Поэтому в последнем интеграле переходим к полярным координатам, при этом
,
:

Пример 2.2. Найти дивергенцию и ротор векторного поля
.

Решение. По формуле (2.4) получаем

Ротор данного векторного поля находим по формуле (2.5)

Пример 2.3. Найти поток векторного поля
через часть плоскости:
, расположенную в первом октанте (нормаль образует острый угол с осью
).

Решение. В силу формулы (2.6)

.

Изобразим часть плоскости :
, расположенную в первом октанте. Уравнение данной плоскости в отрезках имеет вид

(рис. 2.3). Вектор нормали к плоскости имеет координаты:
, единичный вектор нормали

.

.

,
, откуда
, следовательно,

где
- проекция плоскостина
(рис. 2.4).

Пример 2.4. Вычислить поток векторного поля через замкнутую поверхность, образованную плоскостью
и частью конуса
(
) (рис. 2.2).

Решение. Воспользуемся формулой Остроградского-Гаусса (2.8)

.

Найдем дивергенцию векторного поля по формуле (2.4):

где
- объем конуса, по которому ведется интегрирование. Воспользуемся известной формулой для вычисления объема конуса
(- радиус основания конуса,- его высота). В нашем случае получаем
. Окончательно получаем

.

Пример 2.5. Вычислить циркуляцию векторного поля
по контуру , образованному пересечением поверхностей
и
(
). Проверить результат по формуле Стокса.

Решение. Пересечением указанных поверхностей является окружность
,
(рис. 2.1). Направление обхода выбирается обычно так, чтобы ограниченная им область оставалась слева. Запишем параметрические уравнения контура :

откуда

причем параметр изменяется отдо
. По формуле (2.7) с учетом (2.1) и (2.10) получаем

.

Применим теперь формулу Стокса (2.9). В качестве поверхности , натянутой на контур , можно взять часть плоскости
. Направление нормали
к этой поверхности согласуется с направлением обхода контура . Ротор данного векторного поля вычислен в примере 2.2:
. Поэтому искомая циркуляция

где
- площадь области
.
- круг радиуса
, откуда

Рассказать друзьям