Рубидий щелочной. Рубидий: свойства, роль в организме, источники рубидия

💖 Нравится? Поделись с друзьями ссылкой

В 1861 году недавно изобретенный физический метод исследования веществ - спектральный анализ - еще раз продемонстрировал свое могущество и надежность, как залог большого будущего в науке и технике. С его помощью был открыт уже второй неизвестный ранее химический элемент - рубидий. Затем, с открытием в 1869 году Д. И. Менделеевым периодического закона, рубидий вместе с другими элементами занял свое место в таблице, которая внесла порядок в химическую науку.

Дальнейшее изучение рубидия показало, что этот элемент обладает целым рядом интересных и ценных свойств. Мы рассмотрим здесь наиболее характерные и важные из них.

Общая характеристика химического элемента

Рубидий имеет атомный номер 37, то есть в атомах его в состав ядер входит именно такое количество положительно заряженных частиц - протонов. Соответственно нейтральный атом обладает 37 электронами.

Символ элемента - Rb. В рубидий классифицируется как элемент I группы, период - пятый (в короткопериодном варианте таблицы он относится к главной подгруппе I группы и расположен в шестом ряду). Является щелочным металлом, представляет собой мягкое, очень легкоплавкое кристаллическое вещество серебристо-белого цвета.

История обнаружения

Честь открытия химического элемента рубидий принадлежит двум немецким ученым - химику Роберту Бунзену и физику Густаву Кирхгофу, авторам спектроскопического метода изучения состава вещества. После того, как в 1860 году применение спектрального анализа привело к открытию цезия, ученые продолжили исследования, и уже в следующем году при изучении спектра минерала лепидолита ими были обнаружены две неотождествленные линии темно-красного цвета. Именно благодаря характерному оттенку наиболее сильных спектральных линий, по которым удалось установить существование неизвестного ранее элемента, он и получил свое название: слово rubidus переводится с латыни как «багровый, темно-красный».

В 1863 году Бунзен впервые выделил из воды минерального источника металлический рубидий путем упаривания большого количества раствора, разделения солей калия, цезия и рубидия и, наконец, восстановления металла с использованием сажи. Позднее Н. Бекетов сумел восстановить рубидий из его гидроксида с помощью порошка алюминия.

Физическая характеристика элемента

Рубидий - легкий металл, он имеет плотность 1,53 г/см 3 (при нулевой температуре). Образует кристаллы с кубической объемно-центрированной решеткой. Плавится рубидий всего при 39 °C, то есть при комнатной температуре его консистенция уже близка к пастообразной. Металл кипит при 687 °C, пары его имеют зеленовато-синий оттенок.

Рубидий - парамагнетик. По проводимости он более чем в 8 раз превосходит ртуть при 0 °C и почти во столько же раз уступает серебру. Подобно другим щелочным металлам, рубидий отличает очень низкий порог фотоэффекта. Для возбуждения фототока в нем достаточно уже длинноволновых (то есть низкочастотных и несущих меньшую энергию) красных световых лучей. В этом отношении по чувствительности его превосходит лишь цезий.

Изотопы

Рубидий имеет атомный вес 85,468. В природе встречается в виде двух изотопов, различающихся количеством нейтронов в ядре: рубидий-85 составляет наибольшую долю (72,2%), и в значительно меньшем количестве - 27,8% - рубидий-87. Ядра их атомов, помимо 37 протонов, содержат соответственно по 48 и по 50 нейтронов. Более легкий изотоп стабилен, а рубидий-87 имеет огромный по длительности период полураспада - 49 миллиардов лет.

В настоящее время искусственным путем получено несколько десятков радиоактивных изотопов этого химического элемента: от сверхлегкого рубидия-71 до перегруженного нейтронами рубидия-102. Периоды полураспада искусственных изотопов варьируют от нескольких месяцев до 30 наносекунд.

Основные химические свойства

Как было отмечено выше, в ряду химических элементов рубидий (как натрий, калий, литий, цезий и франций) относится к щелочным металлам. Особенность электронной конфигурации их атомов, определяющая химические свойства - это наличие только одного электрона на внешнем энергетическом уровне. Этот электрон легко покидает атом, а ион металла при этом приобретает энергетически выгодную электронную конфигурацию стоящего перед ним в таблице Менделеева инертного элемента. Для рубидия это - конфигурация криптона.

Таким образом, рубидий, как и прочие щелочные металлы, имеет ярко выраженные восстановительные свойства и степень окисления +1. Щелочные свойства сильнее проявляются с увеличением атомного веса, поскольку при этом растет и радиус атома, и, соответственно, ослабляется связь внешнего электрона с ядром, что обусловливает повышение химической активности. Поэтому рубидий активнее лития, натрия и калия, а цезий, в свою очередь, активнее рубидия.

Суммируя все вышесказанное о рубидии, разбор элемента можно произвести, как на иллюстрации, представленной ниже.

Соединения, образуемые рубидием

На воздухе этот металл ввиду своей исключительной реакционной активности окисляется бурно, с воспламенением (пламя имеет фиолетово-розоватый цвет); в ходе реакции образуются надпероксид и пероксид рубидия, проявляющие свойства сильных окислителей:

  • Rb + O 2 → RbO 2 .
  • 2Rb + O 2 → Rb 2 O 2 .

Оксид образуется в том случае, если доступ кислорода к реакции ограничен:

  • 4Rb + O 2 → 2Rb 2 O.

Это вещество желтого цвета, реагирующее с водой, кислотами и кислотными оксидами. В первом случае образуется одна из наиболее сильных щелочей - гидроксид рубидия, в остальных - соли, например, сульфат рубидия Rb 2 SO 4 , большинство которых растворимы.

Еще более бурно, сопровождаясь взрывом (так как мгновенно воспламеняются и рубидий, и освобождаемый водород), протекает реакция металла с водой, в которой образуется гидроксид рубидия, чрезвычайно агрессивное соединение:

  • 2Rb + 2H 2 O → 2RbOH +H 2 .

Рубидий - химический элемент, способный также непосредственно реагировать со многими неметаллами - с фосфором, водородом, углеродом, кремнием, с галогенами. Галогениды рубидия - RbF, RbCl, RbBr, RbI - хорошо растворимы в воде и в некоторых органических растворителях, например, в этаноле или в муравьиной кислоте. Взаимодействие металла с серой (растирание с серным порошком) происходит взрывообразно и приводит к образованию сульфида.

Существуют и малорастворимые соединения рубидия, такие как перхлорат RbClO 4 , они находят применение в аналитике для определения этого химического элемента.

Нахождение в природе

Рубидий - элемент, не относящийся к редким. Встречается он практически везде, входит в состав множества минералов и горных пород, а также содержится в океане, в подземных и речных водах. В земной коре содержание рубидия достигает суммарного значения содержания меди, цинка и никеля. Однако, в отличие от многих гораздо более редких металлов, рубидий - чрезвычайно рассеянный элемент, его концентрация в породе очень низка, и он не образует собственных минералов.

В составе полезных ископаемых рубидий повсеместно сопутствует калию. Наибольшей концентрацией рубидия отличаются лепидолиты - минералы, служащие также источником лития и цезия. Так что рубидий в небольших количествах всегда присутствует там, где обнаруживаются другие щелочные металлы.

Немного о применении рубидия

Краткую характеристику хим. элемента рубидия можно дополнить несколькими словами о том, в каких областях используется этот металл и его соединения.

Рубидий находит применение в производстве фотоэлементов, в лазерной технике, входит в состав некоторых специальных сплавов для ракетной техники. В химической промышленности соли рубидия используются благодаря высокой каталитической активности. Один из искусственных изотопов, рубидий-86, применяется в гамма-дефектоскопии и, кроме того, в фармацевтической промышленности для стерилизации лекарственных препаратов.

Еще один изотоп, рубидий-87, используют в геохронологии, где он служит для определения возраста древнейших горных пород благодаря очень большому периоду полураспада (рубидий-стронциевый метод).

Если несколько десятков лет назад считалось, что рубидий - химический элемент, область применения которого едва ли будет расширяться, то в настоящее время для этого металла появляются все новые перспективы, например, в катализе, в высокотемпературных турбоагрегатах, в специальной оптике и в других сферах. Так что в современных технологиях рубидий играет и будет продолжать играть важную роль.

РУБИДИЙ, Rb (а. rubidium; н. Rubidium; ф. rubidium; и. rubidio), — химический элемент I группы периодической системы Менделеева , атомный номер 37, атомная масса 85,4678; относится к щелочным металлам. В природе встречается в виде смеси двух стабильных изотопов: 85 Rb (72,15%) и 87 Rb (27,85%), последний радиоактивен и, испуская b-частицу, превращается в стабильный изотоп 87 Sr. Известно также 19 искусственных изотопов рубидия.

Открыт немецкими учёными Р. Бунзеном и Г. Кирхгофом в 1861 при спектральном исследовании осадка, выпаренного из минеральных вод Шварцвальда. Название элементу учёные дали по цвету наиболее характерных красных линий его спектра (от лат. rubidus — красный). Металлический рубидий впервые получен Р. Бунзеном в 1863.

Свойства рубидия

Рубидий — мягкий серебристо-белый металл; кристаллическая решётка кубическая, объёмноцентрированная: а = 0,57 нм. Плотность 1525 кг/м 3 ; t плавления 39,47°С; t кипения 685°С; теплопроводность l 22,2 Вт/(м.К); теплоёмкость Ср0 31,09 Дж/(моль.К). Удельное электрическое сопротивление 11,6.10 -6 Ом.см, температурный коэффициент линейного расширения 90.10 -6 К -1 .

Степень окисления +1. Мгновенно воспламеняется на воздухе, с кислородом рубидий соединяется бурно, давая пероксид рубидия (Rb 2 О 2) и надпероксид рубидия (RbО 2). С водой рубидий реагирует со взрывом , при этом выделяется водород и образуется раствор гидроксида рубидия (RbOH), который по своим свойствам похож на гидроксиды щелочных металлов. Рубидий реагирует со всеми неорганическими кислотами. Почти все соединения рубидия хорошо растворяются в воде.

Рубидий в природе

Рубидий в рассеянном состоянии довольно широко распространён в природе, однако, несмотря на относительно высокое содержание в земной коре (1,5 .10 -2 %, т.е. больше, чем меди , цинка и других элементов), рубидий не образует собственных минералов . В качестве изоморфной примеси рубидий входит в минералы других щелочных металлов и прежде всего калия . По сравнению с калием рубидий концентрируется в минералах более поздних стадий дифференциации. К числу богатых рубидием минералов относятся минералы-концентраторы: поллуцит , лепидолит , циннвальдит , амазонит , биотит . Среднее содержание рубидия в горных породах увеличивается в ряду от основных к кислым от 0,1.10 -4 до 1,7.10 -4 г/т. Относительно высокая концентрация рубидия наблюдается в минералах низкотемпературных пегматитовых жил (до 1-3% рубидий). Основные промышленные запасы рубидия сконцентрированы в

С первого взгляда рубидий не производит особого впечатления. Правда, его демонстрируют не на черном бархате, а в запаянной и предварительно вакуумированной стеклянной ампуле. Своим внешним видом – блестящей серебристо-белой поверхностью этот щелочной металл напоминает большинство других металлов. Однако при более близком знакомстве выявляется ряд присущих ему необычайных, подчас уникальных особенностей.

Так, стоит лишь несколько минут подержать в руках ампулу с рубидием, как он превращается в полужидкую массу – ведь температура плавления рубидия всего 39°C.

Атомная масса рубидия средняя между атомными массами меди и серебра, но его свойства резко отличны от свойств металлов-«соседей». Впрочем, этого следовало ожидать, если учесть местоположение рубидия в периодической системе. Прежде всего он легок (плотность 1,5 г/см 3) и плохо проводит электрический ток. Но самое примечательное – это его исключительная химическая активность. В вакууме рубидий хранят не зря – на воздухе он моментально воспламеняется. При этом образуются соединения с высоким содержанием кислорода – перекиси и надперекиси рубидия. Не менее жадно (с воспламенением) соединяется он с хлором и другими галогенами, а с серой и фосфором – даже со взрывом.

Вообще рубидий вступает в реакцию почти со всеми элементами; в литературе описаны его соединения с водородом и азотом (гидриды и нитриды), с бором и кремнием (бориды и силициды), с золотом, кадмием и ртутью (ауриды, кадмиды, меркуриды) и многие другие.

При обычной температуре рубидий разлагает воду столь бурно, что выделяющийся водород тут же воспламеняется. При 300°C его пары разрушают стекло, вытесняя из него кремний.

Известно, что многие металлы обладают фотоэлектрическими свойствами. Свет, попадающий на катоды, изготовленные из этих металлов, возбуждает в цепи электрический ток. Но если в случае платины, например, для этого требуются лучи с очень малой длиной волны, то у рубидия, напротив, фотоэффект наступает под действием наиболее длинных волн видимого спектра – красных. Это значит, что для возбуждения тока в рубидиевом фотоэлементе требуются меньшие затраты энергии. В этом отношении рубидий уступает только цезию, который чувствителен не только к световым, но и к невидимым инфракрасным лучам.

Исключительно высокая активность рубидия проявляется и в том, что один из его изотопов – 87 Rb (а на его долю приходится 27,85% природных запасов рубидия) – радиоактивен: он самопроизвольно испускает электроны (бета-лучи) и превращается в изотоп стронция с периодом полураспада в 50...60 млрд лет.

Около 1% стронция образовалось на Земле именно этим путем, и если определить соотношение изотопов стронция и рубидия с атомной массой 87 в какой-либо горной породе, то можно с большой точностью вычислить ее возраст.

Такой метод пригоден применительно к наиболее древним породам и минералам. С его помощью установлено, например, что самые старые скалы американского континента возникли 2100 млн лет тому назад.

Как видите, у этого внешне непритязательного серебристого-белого металла есть немало интересных свойств.

Почему его назвали рубидием? Rubidus – по-латыни «красный». Казалось бы, это имя скорее подходит меди, чем очень обыкновенному по окраске рубидию. Но не будем спешить с выводами.

Это название было дано элементу №37 его первооткрывателями Кирхгофом и Бунзеном. Сто с лишним лет назад, изучая с помощью спектроскопа различные минералы, они заметили, что один из образцов лепидолита, присланный из Розены (Саксония), дает особые линии в темно-красной области спектра. Эти линии не встречались в спектрах ни одного известного вещества. Вскоре аналогичные темно-красные линии были обнаружены в спектре осадка, полученного после испарения целебных вод из минеральных источников Шварцвальда. Естественно было предположить, что эти линии принадлежат какому-то новому, до того неизвестному элементу. Так в 1861 г. был открыт рубидий. Но содержание его в опробованных образцах было ничтожным, и, чтобы извлечь мало-мальски ощутимые количества, Бунзену пришлось выпаривать свыше 40 м 3 минеральных вод. Из упаренного раствора он осадил смесь хлороплатинатов калия, рубидия и цезия. Для отделения рубидия от его ближайших родственников (и особенно от большого избытка калия) ученый подверг осадок многократной фракционированной кристаллизации и получил из наименее растворимой фракции хлориды рубидия и цезия. Бунзен перевел их затем в карбонаты и тартраты (соли винной кислоты), что позволило еще лучше очистить рубидий и освободить его от основной массы цезия. Огромный труд и незаурядная изобретательность принесли свои плоды: Бунзену удалось разрешить весьма сложный вопрос и получить не только отдельные соли рубидия, но и сам элемент.

Металлический рубидий был впервые получен при восстановлении сажей кислого тартрата. В настоящее время наилучший способ извлечения рубидия – восстановление его хлорида металлическим кальцием. Реакцию ведут в железной пробирке, помещенной в трубчатый кварцевый прибор. В вакууме при 700...800°C рубидий отдает кальцию свой хлор, а сам возгоняется. Его пары собираются в специальном отростке прибора; там они охлаждаются, после чего весь отросток с заключенным в нем рубидием отпаивают. После повторной перегонки в вакууме при 365°C можно получить металлический рубидий высокой степени чистоты.

Сколько рубидия на земном шаре и где он встречается? На последний вопрос ответить легче: практически везде; а вот на первый ответы довольно противоречивы. Разные исследователи называют разные цифры. Сейчас принято считать, что содержание рубидия в земной коре составляет 1,5·10 –2 %. Это больше, чем у таких известнейших металлов, как медь, цинк, олово, свинец. Но выделить рубидий значительно сложнее, чем олово или свинец, и дело не только в большой химической активности элемента №37. Беда в том, что рубидий не образует скоплений, у него нет собственных минералов. Он крайне рассеян и встречается вместе с другими щелочными металлами, всегда сопутствуя калию.

Рубидий обнаружен в очень многих горных породах и минералах, но его концентрация там крайне низка. Только лепидолиты содержат несколько больше Rb 2 О, иногда 0,2%, а изредка и до 1...3%. Соли рубидия растворены в воде морей, океанов и озер. Концентрация их и здесь очень невелика, в среднем порядка 100 мкг/л. Значит, в мировом океане рубидия в сотни раз меньше, чем в земной коре. Впрочем, в отдельных случаях содержание рубидия в воде выше: в Одесских лиманах оно оказалось равным 670 мкг/л, а в Каспийском море – 5700 мкг/л. Повышенное содержание рубидия обнаружено и в некоторых минеральных источниках Бразилии.

Рубидий найден в морских водорослях, в чае, кофе, в сахарном тростнике и табаке: в золе табачных листьев оказалось до 0,004% рубидия (а калия в них в 1000 раз больше).

Из морской воды рубидий перешел в калийные соляные отложения, главным образом в карналлиты. В страссфуртских и соликамских карналлитах содержание рубидия колеблется в пределах от 0,037 до 0,15%. Минерал карналлит – сложное химическое соединение, образованное хлоридами калия и магния с водой; его формула KCl · MgCl 2 · 6H 2 O. Рубидий дает соль аналогичного состава RbCl · MgCl 2 · 6H 2 O, причем обе соли – калиевая и рубидиевая – имеют одинаковое строение и образуют непрерывный ряд твердых растворов, кристаллизуясь совместно. Карналлит хорошо растворим в воде, потому «вскрытие» минерала не представляет большого труда. Сейчас разработаны и описаны в литературе вполне рациональные и экономичные методы извлечения рубидия из карналлита, попутно с другими элементами.

Мощные залежи карналлита, несомненно, – один из наиболее перспективных источников рубидиевого сырья. Хотя концентрация рубидия здесь и невелика, но общие запасы солей таковы, что количество рубидия измеряется миллионами тонн.

Где применяется рубидий? Куда он идет и какую пользу приносит? Увы, читатель! Послужной список рубидия невелик. Мировое производство этого металла ничтожно (несколько десятков килограммов в год), а стоимость непомерно велика: 2,5 доллара за 1 г. Объясняется это главным образом ничтожными запасами рубидия в основных капиталистических странах. И все-таки совершенно «безработным» элементом его не назовешь.

Рубидиевые препараты иногда применяются в медицине как снотворные и болеутоляющие средства, а также при лечении некоторых форм эпилепсии. Отдельные его соединения используются в аналитической химии как специфические реактивы на марганец, цирконий, золото, палладий и серебро. Сам металл изредка употребляют для изготовления фотоэлементов, но по чувствительности и диапазону действия рубидиевые фотокатоды уступают некоторым другим, в частности цезиевым.

Между тем исследования, проведенные учеными различных стран, показали, что рубидий и его соединения обладают многими практически ценными качествами. Среди них первостепенное значение имеет каталитическая активность.

Еще в 1921 г. немецкие химики Фишер и Тропш нашли, что карбонат рубидия – превосходный компонент катализатора для получения синтетической нефти – синтола. Синтолом была названа смесь спиртов, альдегидов и кетонов, образующаяся из водяного газа (смеси водорода с окисью углерода) при 410°C и давления 140...150 атм в присутствии специального катализатора. После добавления бензола эту смесь можно было использовать в качестве моторного топлива. Катализатором служила железная стружка, пропитанная гидроокисью калия. Но если калий заменить рубидием, то эффективность процесса значительно повышается. Во-первых, выход маслянистых продуктов и высших спиртов становится вдвое больше; во-вторых, рубидиевый катализатор (в отличие от калиевого) не покрывается сажей и поэтому сохраняет свою первоначальную активность значительно дольше.

Позднее были запатентованы специальные катализаторы с рубидием для синтеза метанола и высших спиртов, а также стирола и бутадиена. Исходными продуктами служили: в первом случае – водяной газ, во втором – этилбензол и бутиленовая фракция нефти.

Стирол и бутадиен – исходные вещества для получения синтетического каучука и поэтому их производство занимает видное место в химической промышленности высокоразвитых стран. Обычно катализаторами здесь служат окислы железа с примесью окислов других металлов, главным образом меди, цинка, хрома, марганца или магния, пропитанные солями калия.

Но если вместо калия ввести в состав катализатора до 5% карбоната рубидия, то скорость реакции удваивается. Кроме того, значительно повышается так называемое селективное действие катализатора и его устойчивость, т.е. процесс идет в желаемом направлении, без образования побочных продуктов, а катализатор служит дольше и не требует частой смены.

В последние годы предложены катализаторы, содержащие в том или ином виде рубидий, для гидрогенизации, дегидрогенизации, полимеризации и некоторых других реакций органического синтеза. Так, например, металлический рубидий облегчает процесс получения циклогексана из бензола. В этом случае процесс идет при значительно более низких температурах и давлениях, чем при активации его натрием или калием, и ему почти не мешают «смертельные» для обычных катализаторов яды – вещества, содержащие серу.

Карбонат рубидия оказывает положительное действие на процесс полимеризации аминокислот; с его помощью получены синтетические полипептиды с молекулярной массой до 40000, причем реакция протекает без инерции, моментально.

Очень интересное исследование было проведено в США в связи с работами по изысканию новых видов авиационного топлива. Было найдено, что тартрат рубидия может быть катализатором при окислении сажи окислами азота, значительно снижая температуру этой реакции по сравнению с солями калия.

По некоторым данным, рубидий ускоряет изотопный обмен ряда элементов. В частности, его способность непосредственно соединяться как с водородом, так и с дейтерием может быть использована для получения тяжелого водорода, так как дейтерид рубидия обладает большей летучестью, чем обычный гидрид. Не исключено, что гидрид и особенно борогидриды рубидия смогут быть применены в качестве высококалорийных добавок к твердым топливам.

Известно, что соединения рубидия с сурьмой, висмутом, теллуром, пригодные для изготовления фотокатодов, обладают полупроводниковыми свойствами, а его однозамещенные фосфаты и арсенаты могут быть получены в виде пьезоэлектрических кристаллов.

Наконец у эвтектических* смесей хлоридов рубидия с хлоридами меди, серебра или лития электрическое сопротивление падает с повышением температуры столь резко, что они могут стать весьма удобными термисторами в различных электрических установках, работающих при температуре 150...290°C.

* Эвтектикой называется наиболее легкоплавкий состав из двух (или нескольких) веществ, взятых в определенном соотношении.

Таков далеко не полный перечень тех возможностей, которыми располагает рубидий...

На Северном Урале среди дремучих лесов расположен старинный русский город Соликамск. За годы Советской власти на высоком берегу Камы, вблизи старого Соликамска, вырос новый, сияющий огнями город. Здесь находится одна из первых шахт Соликамского калийного комбината. Спускаясь в эту шахту, попадаешь на довольно широкую площадку, чем-то напоминающую станцию метро. Здесь так же светло, и уютно, а стены «облицованы» блестящим, как мрамор, калийно-натриевым минералом сильвинитом. Сильвинит окрашен в различные цвета: то он снежно-белый (чистейший сильвин – хлорид калия), то переливается всеми оттенками от светло-розового до почти красного и от светло-голубого до темно-синего. Он пронизан прозрачными и бесцветными кристаллами хлорида натрия. Но среди них иногда попадаются крупные блестящие и совершенно черные кубики.

Откуда взялась поваренная соль черного цвета?

Полагают, что это – почерк рубидия, что хлорид натрия почернел под действием радиоактивных излучений 87 Rb. Так рубидий напоминает о себе, дает знать о своем существовании.

Не только спектрографисты

Первооткрыватели рубидия и цезия немецкие ученые Р. Бунзен и Г. Кирхгоф прославились не только как создатели спектрального анализа. Каждому из них принадлежит немало и интересных работ и открытий.

Кирхгоф

Густав Роберт Кирхгоф – физик с мировым именем. Он установил закономерности течения электрического тока в разветвленных цепях, ввел в физику понятие абсолютно черного тела, сформулировал основной закон теплового излучения.

В 1861 г. Кирхгоф установил, что Солнце состоит из раскаленной жидкой массы, окруженной атмосферой паров, и высказал правильные предположения о химическом составе этих паров. Всю жизнь Кирхгоф был убежденным материалистом. Спектральный анализ, основы которого заложены Кирхгофом и Бунзеном, стал важнейшим физико-химическим методом научных исследований. Он широко применяется и в наше время.

Бунзен

Роберт Вильгельм Бунзен – выдающийся немецкий химик XIX в. Первой крупной работой Буизена было исследование органических соединений мышьяка. В 1841 г. он изобрел угольно-цинковый гальванический элемент, электродвижущая сила которого достигала 1,7 в. По тем временам это был самый мощный гальванический элемент. Используя батарею таких элементов, Бунзен получил электролизом из расплавов солей магний, кальций, литий, стронций, барий.

Много внимания уделял ученый определению физических констант важнейших веществ. Он разработал точные методы газового анализа, изобрел и усовершенствовал многие лабораторные приборы и оборудование. Разовыми горелками и колбами Бунзена для фильтрования до сих пор пользуются в лабораториях всего мира.

Бунзен был самоотверженно предан науке. Работая с мышьяком, он тяжело отравился, во время одного из взрывов в лаборатории потерял глаз.

Заслуги ученого были признаны всем миром. В 1862 г. Российская Академия наук избрала его иностранным членом-корреспондентом.

Рубидий – (Rubidium) Rb, химический элемент 1-й (Ia) группы Периодической системы. Щелочной элемент. Атомный номер 37, относительная атомная масса 85,4678. В природе встречается в виде смеси стабильного изотопа 85 Rb (72,15%) и радиоактивного изотопа 87 Rb (27,86%) с периодом полураспада 4,8 . 10 10 лет. Искусственно получено еще 26 радиоактивных изотопов рубидия с массовыми числами от 75 до 102 и периодами полураспада от 37 мс (рубидий-102) до 86 дней (рубидий-83).

Атомный номер - 37

Атомная масса - 85,468

Плотность, кг/м³ - 1530

Температура плавления, °С - 38,9

Теплоемкость, кДж/(кг·°С) - 0,335

Электроотрицательность - 0,8

Ковалентный радиус, Å - 2,16

1-й ионизац. потенциал, эв - 4,18

Степень окисления +1.

Рубидий был открыт в 1861 немецкими учеными Робертом Бунзеном и Густавом Кирхгоффом и стал одним из первых элементов, открытых методом спектроскопии, который был изобретен Бунзеном и Кирхгоффом в 1859. Роберт Бунзен и Густав Кирхгоф добыли 150 кг лепидолита и получили несколько грамм солей рубидия для анализов, таким образом, они обнаружили новый элемент. Название элемента отражает цвет наиболее яркой линии в его спектре.

Распространение рубидия в природе

Рубидий - типичный рассеянный элемент. Несмотря на сравнительно высокое содержание в земной коре (кларк) 1,5·10 -2 % по массе, то есть больше, чем у Cu, Pb, Zn и многих других металлов, Рубидий не образует собственных минералов и преимущественно входит как изоморфная примесь в минералы калия и цезия (сильвин, карналлит, микроклин, Rb-мусковит и т. д.). Рубидий, подобно калию, содержится в кислых изверженных породах (гранитоидах) и особенно в пегматитах (до 1-3% Рубидий). В ультраосновных и основных породах Рубидий мало (2·10 -4 и 4,5·10 -3 % соответственно). Воды морей и океанов содержат от 1,0·10 -5 до 2,1·10 -5 % Рубидия. Соли Рубидия входят в состав вод многих минеральных источников.

Наиболее богаты Рубидием так называемых минералы-концентраторы: лепидолит, циннвалъдит, поллуцит.

Физические свойства Рубидия. Рубидий образует серебристо-белые мягкие кристаллы, имеющие на свежем срезе металлический блеск. Твердость по Бринеллю 0,2 Мн/м 2 (0,02 кгс/мм 2). Кристаллическая решетка Рубидия кубическая объемно-центрированная, а=5,70Å (0 °С). Атомный радиус 2,48 Å, радиус иона Rb + 1,49 Å. Плотность 1,525 г/см 3 (0 °С), t пл 38,9 °С, t кип 703 °С. Удельная теплоемкость 335,2 дж/(кг·К) , термический коэффициент линейного расширения 9,0·10 -5 град -1 (0-38 °С), модуль упругости 2,4 Гн/м 2 (240 кгс/мм 2), удельное объемное электрическое сопротивление 11,29·10 -6 ом·см (20 °С); Рубидий парамагнитен.

Химические свойства Рубидия. Атом Rb легко отдает единственный электрон внешней оболочки (ее конфигурация 5s 1). Электроотрицательность Рубидий 0,89, первый потенциал ионизации 4,176 эв. Во всех химических соединениях Рубидий одновалентен (степень окисления +1). Химическая активность Рубидия очень высока. С кислородом соединяется бурно, давая пероксид Rb 2 O 2 и надпероксид RbO 2 (при недостатке кислорода образуется оксид Rb 2 O). С водой Рубидий реагирует со взрывом, причем выделяется водород и образуется раствор гидрооксида Рубидия, RbOH. По свойствам RbOH сильно напоминает гидрооксид калия КОН. Со многими неметаллами Рубидий соединяется непосредственно; бурно взаимодействует с большинством кислот. Почти все соли Рубидия хорошо растворимы в воде. Мало растворимы перхлорат RbClO 4 , хлороплатинат Rb 2 и некоторые другие; они используются для аналитического определения Rb наряду с методом пламенной фотометрии, основанным на свойстве паров Rb и его соединений окрашивать пламя в ярко-красный цвет.

Получение Рубидия. Соли Rb получают как побочный продукт в производстве солей Li, Mg и К. Металлический Рубидий получают восстановлением в вакууме RbCl при 700-800 °С кальцием. Вследствие высокой реакционной способности Рубидий хранят в металлических сосудах под слоем парафинового масла или в запаянных стеклянных ампулах в инертной атмосфере.

Применение Рубидия. Применяют Рубидий главным образом в производстве катодов для фотоэлементов; добавляют также в газоразрядные аргоновые и неоновые трубки для усиления интенсивности свечения. Иногда Рубидий вводят в специальные сплавы (геттеры). Соли Рубидия используют как катализаторы в органических синтезе.

Месторождения рубидия в России

Для цезия и рубидия пегматиты и сейчас остаются единственным сырьевым источником, имеющим промышленное значение. Пегматитовые месторождения олова известны в Восточной Сибири России и расположены в докембрийских комплексах. Руды обычно комплексные, разрабатываются на олово, тантал, ниобий, скандий, рубидий, частично на вольфрам и висмут.

В поллуцитовых рудах месторождение Васин-Мыльк, расположенного в Ловозерском районе, содержатся крупные запасы рубидия и цезия. Важнейшим и крупнейшим источником рубидия, цезия, стронция и редких земель являются хибинские апатито-нефелиновые руды.

Лепидолит - минерал группы слюд, являющийся вторичным источником лития. Является одним из основных источников редких щелочных металлов, рубидия и цезия.

Госбалансом учитывается Верхнекамское месторождение калийно-магниевых солей, в котором рубидий является попутным полезным ископаемым. В солях рубидий связан с карналлитовой толщей. Содержание оксида рубидия в рудах колеблется от 0 до 120 г/т, среднее – 90 г/т. Массовая доля рубидия в руде и обогащённом карналлите составляет соответственно 0,0104% и 0,013%. Балансовые запасы оксида рубидия (Rb2О) ВКМКС учитываются по Палашерскому и Остальная Площадь участкам, забалансовые – по Усть-Яйвинскому участку.

Балансовые запасы рубидия, содержащегося в карналлитовых рудах Березниковского, Быгельско-Троицкого, Соликамского и Ново-Соликамского участков, утратили промышленное значение и были списаны. Причиной списания послужила экономическая нецелесообразность извлечения рубидия. Запасы рубидия не осваиваются из-за наличия более эффективных сырьевых источников (поллуцитовых концентратов), технология переработки которых более рентабельна.

Мировые запасы рубидия

Содержание рубидия в земной коре составляет 7,8·10 −3 %. Это примерно равно содержанию никеля, меди и цинка. По распространенности в земной коре рубидий находится примерно на 20-м месте, однако в природе он находится в рассеянном состоянии, рубидий - типичный рассеянный элемент. Собственные минералы рубидия неизвестны. Рубидий встречается вместе с другими щелочными элементами, он всегда сопутствует калию. Обнаружен в очень многих горных породах и минералах, найденных, в частности, в Северной Америке, Южной Африке и России, но его концентрация там крайне низка. Только лепидолиты содержат несколько больше рубидия, иногда 0,2 %, а изредка и до 1-3 % (в пересчете на Rb 2 О).

Соли рубидия растворены в воде морей, океанов и озер. Концентрация их и здесь очень невелика, в среднем порядка 100 мкг/л. В отдельных случаях содержание рубидия в воде выше: в Одесских лиманах оно оказалось равным 670 мкг/л, а в Каспийском море - 5700 мкг/л. Повышенное содержание рубидия обнаружено и в некоторых минеральных источниках Бразилии.

Из морской воды рубидий перешел в калийные соляные отложения, главным образом, в карналлиты. В страссфуртских и соликамских карналлитах содержание рубидия колеблется в пределах от 0,037 до 0,15 %. Минерал карналлит - сложное химическое соединение, образованное хлоридами калия и магния с водой; его формула KCl·MgCl 2 ·6H 2 O. Рубидий дает соль аналогичного состава RbCl·MgCl 2 ·6H 2 O, причём обе соли - калиевая и рубидиевая - имеют одинаковое строение и образуют непрерывный ряд твёрдых растворов, кристаллизуясь совместно. Карналлит хорошо растворим в воде, потому вскрытие минерала не составляет большого труда. Сейчас разработаны и описаны в литературе рациональные и экономичные методы извлечения рубидия из карналлита, попутно с другими элементами.

Получение рубидия

Далеко не все изотопы можно получать в атомных реакторах по ядерным реакциям с участием нейтронов. Многие радионуклиды синтезируют на ускорителях протонов и тяжелых ионов, например, на циклотронах. На циклотронах реализован комплекс по производству радиоактивных изотопов йода-123, фтора-18, углерода-11, азота-13, кислорода-15, рубидия-81, галлия-67, индия-111, таллия-201 и радиофармпрепаратов (РФП) на их основе.

Как известно, Кольский полуостров богат месторождениями редких металлов. В частности, здесь расположено Вороньетундровское месторождение - наиболее перспективное российское месторождение цезиевого минерала поллуцита. Кроме того, добываемый совместно с апатитовым, нефелиновый концентрат содержит достаточно высокую концентрацию рубидия (около 0.014 мас. %). Примерно 40 лет назад в связи с намечавшимся использованием редких щелочных металлов (прежде всего цезия) в ионных ракетных двигателях возникла необходимость разработки технологии и организации промышленного производства высокочистых рубидия и цезия. По инициативе академика И.В.Тананаева необходимые исследования были поставлены в Институте химии и технологии редких элементов и минерального сырья Кольского филиала Академии Наук.

Принципиально возможны две стратегии получения высокочистых металлов:

Получение высокочистых соединений из различных видов природного сырья и их дальнейшая переработка на высокочистые металлы;

Получение черновых металлов (сплавов) с их последующим разделением на индивидуальные металлы и их доочисткой.

Поллуцит представляет собой гидратированный алюмосиликат цезия, содержащий до 36,77 и 0,72 мас. % цезия и рубидия соответственно. Цеолитная структура поллуцита определяет наличие в нем воды, которая не может быть удалена полностью даже при длительной высокотемпературной (800-850о) вакуумной прокалке. Сопутствующими минералами, как правило, являются другие алюмосиликаты (прежде всего анальцим), лепидолит, танталит, другие минералы. Поллуцитсодержащие руды часто образуют крупные рудные тела, легко обогащаемые методом ручной разборки с получением богатых концентратов. Содержание в них оксида цезия составляет ≥ 26, оксида рубидия до 1,7 мас. % (повышенное содержание рубидия связано с присутствием в концентрате лепидолита). Однако для основной части Вороньетундровского и других месторождений России характерны мелко вкрапленные руды, для которых разработаны методы механического и химического обогащения. При химическом обогащении цезий извлекается не в виде поллуцита, а в виде солевых концентратов. Для переработки поллуцита на химические соединения предложен ряд технологий, позволяющих получать различные соединения или концентраты на их основе (нитраты, сульфаты, хлориды, карбонаты и др.). Производство концентратов при химической переработке сырья значительно дешевле, чем товарных солей.

Рубидий является рассеянным элементом. Его выделяют в виде хлоридных, нитратных, сульфатных, карбонатных концентратов при химической переработке различных видов минерального сырья. В частности, разработаны методы получения карбонатных концентратов рубидия из нефелина, хлоридных концентратов рубидия из карналлита, опытно-промышленное производство которых осуществлялось на Волховском алюминиевом заводе, Пикалевском глиноземном комбинате и Березниковском титаномагниевом заводе.

Нитрат цезия получали при переработке поллуцита на Новосибирском заводе химических реактивов, нитратные и карбонатные концентраты рубидия и цезия - попутно при переработке сподумена на Красноярском химико-металлургическом заводе.

Термодинамический анализ возможных реакций показал, что процессы характеризуются малыми величинами изменения энергии Гиббса, и, как следствие, в них не может быть получено прямое высокое извлечение целевых компонентов. Однако оно было достигнуто за счет смещения равновесия, достигавшегося путем непрерывной отгонки из зоны реакции более легко кипящего целевого компонента (рубидия, цезия). При восстановлении концентратов с относительно низким содержанием рубидия или цезия концентрацию целевого компонента в черновых сплавах удавалось значительно повысить уже на стадии восстановления. Так, при восстановлении натрием поташных концентратов, содержавших около (мас.) 10.7 % рубидия, были полученный рубидий- калиевый сплав содержал около 50 % рубидия, а при восстановлении калием - свыше 60 %.

Термодинамические расчеты показали, что восстановление карбонатов рубидия и цезия натрием может протекать параллельно по двум реакциям:

(Rb, Cs)2CO3 + 2Na → 2(Rb, Cs) + Na2CO3 и

(Rb, Cs)2CO3 + 6Na → 2(Rb, Cs) + 3Na2O+С

Данная технология получения высокочистых гидроксидов рубидия и цезия взаимодействием металлов с высокочистой водой (протиевой или дейтерированной), позволила организовать производство многих особо чистых соединений, в первую очередь фосфатов и галогенидов. Исследования позволили создать промышленное производство высокочистых рубидия и цезия из сырья Кольского полуострова.

Применение рубидия

Хотя в ряде областей применения рубидий уступает цезию, этот редкий щелочной металл играет важную роль в современных технологиях. Можно отметить следующие основные области применения рубидия: катализ, электронная промышленность, специальная оптика, атомная промышленность, медицина.

Рубидий используется не только в чистом виде, но и в виде ряда сплавов и химических соединений. Рубидий имеет хорошую сырьевую базу, более благоприятную, чем для цезия. Область применения рубидия в связи с ростом его доступности расширяется.

Изотоп рубидий-86 широко используется в гамма-дефектоскопии, измерительной технике, а также при стерилизации лекарств и пищевых продуктов. Рубидий и его сплавы с цезием - это весьма перспективный теплоноситель и рабочая среда для высокотемпературных турбоагрегатов (в этой связи рубидий и цезий в последние годы приобрели важное значение, и чрезвычайная дороговизна металлов уходит на второй план по отношению к возможностям резко увеличить КПД турбоагрегатов, а значит и снизить расходы топлива и загрязнение окружающей среды). Применяемые наиболее широко в качестве теплоносителей системы на основе рубидия - это тройные сплавы:натрий-калий-рубидий, и натрий-рубидий-цезий.

В катализе рубидий используется как в органическом, так и неорганическом синтезе. Каталитическая активность рубидия используется в основном для переработки нефти на ряд важных продуктов. Ацетат рубидия, например, используется для синтеза метанола и целого ряда высших спиртов из водяного газа, что актуально в связи с подземной газификацией угля и в производстве искусственного жидкого топлива для автомобилей и реактивного топлива. Ряд сплавов рубидия с теллуром обладают более высокой чувствительностью в ультрафиолетовой области спектра, чем соединения цезия, и в связи с этим он способен в этом случае составить конкуренцию цезию как материал для фотопреобразователей. В составе специальных смазочных композиций (сплавов), рубидий применяется как высокоэффективная смазка в вакууме (ракетная и космическая техника).

Гидроксид рубидия применяется для приготовления электролита для низкотемпературных химических источников тока, а также в качестве добавки к раствору гидроксида калия для улучшения его работоспособности при низких температурах и повышения электропроводности электролита. В гидридных топливных элементах находит применение металлический рубидий.

Хлорид рубидия в сплаве с хлоридом меди находит применение для измерения высоких температур (до 400 °C).

Пары рубидия используются как рабочее тело в лазерах, в частности, в рубидиевых атомных часах.

Хлорид рубидия применяется в топливных элементах в качестве электролита, то же можно сказать и о гидроксиде рубидия, который очень эффективен как электролит в топливных элементах, использующих прямое окисление угля.

Рубидий применяют в фотоэлементах (у него очень мала работа выхода электрона). Rb 2 CO 3 используется в качестве катализатор.

Рассказать друзьям